The hydrodynamic problem of a two-dimensional wedge entering water is studied based on Smoothed Particle Hydrodynamics (SPH) model. A non-reflection boundary treatment for SPH method is proposed to reduce the reflec...The hydrodynamic problem of a two-dimensional wedge entering water is studied based on Smoothed Particle Hydrodynamics (SPH) model. A non-reflection boundary treatment for SPH method is proposed to reduce the reflection of sound waves. The boundary pressure is obtained using an improved coupling boundary treatment approach, which is validated by comparing the simulation results with experimental and analytical results in literature. A series of cases with different initial entering velocities are simulated. The maximum force on the wedge and the corresponding time required to reach it for the different cases of initial entering velocities of the wedge are obained and fitted into formulas against the initial entering velocity of the wedge. The maximum drag coefficients of the wedge for the different cases with Froude number greater than 2 are all near the value of 0.91.展开更多
The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions ...The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone.From the measurements we obtain (1)the primary shock wave caused by the impact of the blunt body on free surface;(2)the vapor pressure inside the cavity;(3)the secondary shock wave caused by pulling away of the cavity from free surface;and so on.The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography.The periodic and 3 dimensional motion of the supercavitation is revealed.The experiment is carried out at room temperature.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10802049)the Shanghai Leading Academic Discipline Project (Grant No.B206)the Research Found of State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University (Grant No.GKZD010806)
文摘The hydrodynamic problem of a two-dimensional wedge entering water is studied based on Smoothed Particle Hydrodynamics (SPH) model. A non-reflection boundary treatment for SPH method is proposed to reduce the reflection of sound waves. The boundary pressure is obtained using an improved coupling boundary treatment approach, which is validated by comparing the simulation results with experimental and analytical results in literature. A series of cases with different initial entering velocities are simulated. The maximum force on the wedge and the corresponding time required to reach it for the different cases of initial entering velocities of the wedge are obained and fitted into formulas against the initial entering velocity of the wedge. The maximum drag coefficients of the wedge for the different cases with Froude number greater than 2 are all near the value of 0.91.
基金The project supported by the "BaiRen Plan" of Chinese Academy of Sciences
文摘The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone.From the measurements we obtain (1)the primary shock wave caused by the impact of the blunt body on free surface;(2)the vapor pressure inside the cavity;(3)the secondary shock wave caused by pulling away of the cavity from free surface;and so on.The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography.The periodic and 3 dimensional motion of the supercavitation is revealed.The experiment is carried out at room temperature.