A layout of the offshore wind farm(OSWF)plays a vital role in its capital cost of installation. One of the major contributions in the installation cost is electrical collector system(ECS). ECS includes: submarine cabl...A layout of the offshore wind farm(OSWF)plays a vital role in its capital cost of installation. One of the major contributions in the installation cost is electrical collector system(ECS). ECS includes: submarine cables,number of wind turbines(WTs), offshore platforms etc. By considering the above mentioned problem having an optimized design of OSWF provides the better feasibility in terms of economic considerations. This paper explains the methodology for optimized designing of ECS. The proposed methodology is based on combined elitist ant colony optimization and multiple travelling salesman problem.The objective is to minimize the length of submarine cable connected between WTs and to minimize the wake loss in the wind farm in order to reduce the cost of cable and cable power loss. The methodology is applied on North Hoyle and Horns Rev OSWFs connected with 30 and 80 WTs respectively and the results are presented.展开更多
A multi-stage axial compressor has inherently unsteady flow fields because of the following main reasons: (1) relative positions between rotor and stator airfoil; (2) the buildup of converted wakes lead to complex wak...A multi-stage axial compressor has inherently unsteady flow fields because of the following main reasons: (1) relative positions between rotor and stator airfoil; (2) the buildup of converted wakes lead to complex wake/wake and wake/airfoil interactions. The distributions of the potential flows and wakes in the flow passage are depended on the relative positions of blade rows in axial and circumference direction, so variations in the relative axial positions (axial gap) and circumferential positions (clocking effect) of stators or rotors can change these distributions, leading to different compressor efficiency. The current study presents the experimental/numerical result of a low-speed axial compressor, considering the combined effects of stator clocking and variation of axial gaps. Testing was conducted in Two-Stage Axial Compressor Facility in Harbin Institute of Technology. In the test, time averaged data were collected. The results of experimental and time accurate flow calculation for 2 axial gaps, 8 clocking positions for each gap are compared. It is shown that clocking determines the degree of interaction of a stator with the wake of another upstream stator for different gaps between the blade rows.展开更多
文摘A layout of the offshore wind farm(OSWF)plays a vital role in its capital cost of installation. One of the major contributions in the installation cost is electrical collector system(ECS). ECS includes: submarine cables,number of wind turbines(WTs), offshore platforms etc. By considering the above mentioned problem having an optimized design of OSWF provides the better feasibility in terms of economic considerations. This paper explains the methodology for optimized designing of ECS. The proposed methodology is based on combined elitist ant colony optimization and multiple travelling salesman problem.The objective is to minimize the length of submarine cable connected between WTs and to minimize the wake loss in the wind farm in order to reduce the cost of cable and cable power loss. The methodology is applied on North Hoyle and Horns Rev OSWFs connected with 30 and 80 WTs respectively and the results are presented.
文摘A multi-stage axial compressor has inherently unsteady flow fields because of the following main reasons: (1) relative positions between rotor and stator airfoil; (2) the buildup of converted wakes lead to complex wake/wake and wake/airfoil interactions. The distributions of the potential flows and wakes in the flow passage are depended on the relative positions of blade rows in axial and circumference direction, so variations in the relative axial positions (axial gap) and circumferential positions (clocking effect) of stators or rotors can change these distributions, leading to different compressor efficiency. The current study presents the experimental/numerical result of a low-speed axial compressor, considering the combined effects of stator clocking and variation of axial gaps. Testing was conducted in Two-Stage Axial Compressor Facility in Harbin Institute of Technology. In the test, time averaged data were collected. The results of experimental and time accurate flow calculation for 2 axial gaps, 8 clocking positions for each gap are compared. It is shown that clocking determines the degree of interaction of a stator with the wake of another upstream stator for different gaps between the blade rows.