Exploration practice has proved that deep and ultra-deep reservoirs consist of mainly matrix-porous dolomite reservoirs and fractured-vuggy karst reservoirs and still will be very important targets for future explorat...Exploration practice has proved that deep and ultra-deep reservoirs consist of mainly matrix-porous dolomite reservoirs and fractured-vuggy karst reservoirs and still will be very important targets for future exploration, in which large oil and gas fields such as Anyue, Yuanba, Halahatang, Fuman and Shunbei have been discovered. This paper systematically summarizes three theoretical and technical achievements in studying deep and ultra-deep carbonate reservoirs in the past decade.(1) The micro-zone and multi-parameter experiment analysis technology featured by determining the “age, temperature, pressure and fluid properties” of carbonate reservoirs, together with experimental simulation of cross-tectonic-period pore formation and preservation featured by the “multi-stage, continuous, visualized and online detection technology”, providing useful tools for studying the pore formation and preservation mechanism of deep and ultra-deep carbonate rocks from the perspective of“forward” and “inversion”.(2) Deep and ultra-deep matrix-porous dolostone reservoirs are still controlled by sedimentary facies,among which reef(mound) and/or beach contribute most. The reservoir space is mainly composed of sedimentary primary pores and supergene dissolution pores and fractures, though some of reservoir spaces are formed by burial dissolution and they tend to develop and may locally concentrate following the pre-existing porous zone. In other words, burial dissolution vugs are inherited rather than newly formed. Early dolomite precipitation(or dolomitization) has a high potential to preserve early pores.(3) The development and preservation mechanism of fractured-vuggy karst limestone reservoirs in deep and ultra-deep realm was analyzed. Pene-contemporaneous dissolution and interlayer and buried-hill karstification control the development of early and late supergene fractured-vuggy reservoirs. Strike-slip faults superimposed with supergene karstification lead to the development of “fence-style” faulted karst rese展开更多
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs.While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transp...The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs.While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions.Alveolate dissolved pores,krast caves,and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin.There were four categories of formation,which are matrix dominated,inter-breccia dissolved pore dominated,dissolved pore and cave dominated,and fissure and cave dominated,based on the development intensity and connectedness of caves and fissures.The caves and fissures make the wormhole formation and propagation particularly complicated.Firstly,the 3-D topological structure of dissolved pores,vugs,fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free.Secondly,3-D patterns of wormhole are obtained with CT scanning after core flooding by acid.Additionally,the porethroat network model is reconstructed with digital cores technology.Then,the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation.Lastly,the wormhole pattern gained by CT scanning and simulating with two-scale model is compared.Meanwhile,the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field,Sichuan Basin.The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve,which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations.In addition,the simulated acid etched fracture length with considering the dynamic wormhole leakoff was consistent with the we展开更多
Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In ...Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In this study, electrical conduction in a vuggy reservoir is theoretically analyzed to establish a new saturation equation for vuggy reservoirs. We found that vugs have a greater effect on saturation than resistivity, which causes inflection in the rock-electricity curve. Using single-variable exPeriments, we evaluated the effects of rug size, vug number, and vug distribution on the rock-electricity relation. Based on the general saturation model, a saturation equation for vuggy reservoirs is derived, and the physical significance of the equation parameters is discussed based on the seepage-electricity similarity. The equation parameters depend on the pore structure, and vugs and matrix pore size distribution. Furthermore, a method for calculating the equation parameters is proposed, which uses nuclear magnetic resonance (NMR) data to calculate the capillary pressure curve. Field application of the proposed equation and parameter derivation method shows good match between calculated and experimental results, with an average absolute error of 5.8%.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. U23B20154)。
文摘Exploration practice has proved that deep and ultra-deep reservoirs consist of mainly matrix-porous dolomite reservoirs and fractured-vuggy karst reservoirs and still will be very important targets for future exploration, in which large oil and gas fields such as Anyue, Yuanba, Halahatang, Fuman and Shunbei have been discovered. This paper systematically summarizes three theoretical and technical achievements in studying deep and ultra-deep carbonate reservoirs in the past decade.(1) The micro-zone and multi-parameter experiment analysis technology featured by determining the “age, temperature, pressure and fluid properties” of carbonate reservoirs, together with experimental simulation of cross-tectonic-period pore formation and preservation featured by the “multi-stage, continuous, visualized and online detection technology”, providing useful tools for studying the pore formation and preservation mechanism of deep and ultra-deep carbonate rocks from the perspective of“forward” and “inversion”.(2) Deep and ultra-deep matrix-porous dolostone reservoirs are still controlled by sedimentary facies,among which reef(mound) and/or beach contribute most. The reservoir space is mainly composed of sedimentary primary pores and supergene dissolution pores and fractures, though some of reservoir spaces are formed by burial dissolution and they tend to develop and may locally concentrate following the pre-existing porous zone. In other words, burial dissolution vugs are inherited rather than newly formed. Early dolomite precipitation(or dolomitization) has a high potential to preserve early pores.(3) The development and preservation mechanism of fractured-vuggy karst limestone reservoirs in deep and ultra-deep realm was analyzed. Pene-contemporaneous dissolution and interlayer and buried-hill karstification control the development of early and late supergene fractured-vuggy reservoirs. Strike-slip faults superimposed with supergene karstification lead to the development of “fence-style” faulted karst rese
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金The authors are grateful for the research support of the Postdoctoral Program of Postdoctoral Work Centre,Southwest Oil&Gas Field Company(No.20150304-08).
文摘The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs.While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions.Alveolate dissolved pores,krast caves,and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin.There were four categories of formation,which are matrix dominated,inter-breccia dissolved pore dominated,dissolved pore and cave dominated,and fissure and cave dominated,based on the development intensity and connectedness of caves and fissures.The caves and fissures make the wormhole formation and propagation particularly complicated.Firstly,the 3-D topological structure of dissolved pores,vugs,fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free.Secondly,3-D patterns of wormhole are obtained with CT scanning after core flooding by acid.Additionally,the porethroat network model is reconstructed with digital cores technology.Then,the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation.Lastly,the wormhole pattern gained by CT scanning and simulating with two-scale model is compared.Meanwhile,the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field,Sichuan Basin.The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve,which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations.In addition,the simulated acid etched fracture length with considering the dynamic wormhole leakoff was consistent with the we
基金supported by the National S&T Major Special Project(No.2011ZX05020-008)
文摘Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In this study, electrical conduction in a vuggy reservoir is theoretically analyzed to establish a new saturation equation for vuggy reservoirs. We found that vugs have a greater effect on saturation than resistivity, which causes inflection in the rock-electricity curve. Using single-variable exPeriments, we evaluated the effects of rug size, vug number, and vug distribution on the rock-electricity relation. Based on the general saturation model, a saturation equation for vuggy reservoirs is derived, and the physical significance of the equation parameters is discussed based on the seepage-electricity similarity. The equation parameters depend on the pore structure, and vugs and matrix pore size distribution. Furthermore, a method for calculating the equation parameters is proposed, which uses nuclear magnetic resonance (NMR) data to calculate the capillary pressure curve. Field application of the proposed equation and parameter derivation method shows good match between calculated and experimental results, with an average absolute error of 5.8%.