期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Label fusion for segmentation via patch based on local weighted voting
1
作者 Kai ZHU Gang LIU +1 位作者 Long ZHAO Wan ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第5期680-688,共9页
Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challeng... Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challenge. In this paper we propose a novel patch-based segmentation method combining a local weighted voting strategy with Bayesian inference. Multiple atlases are registered to a target image by an advanced normalization tools(ANTs) algorithm. To obtain a segmentation of the target, labels of the atlas images are propagated to the target image. We first adopt intensity prior and label prior as two key metrics when implementing the local weighted voting scheme, and then compute the two priors at the patch level. Further, we analyze the label fusion procedure concerning the image background and take the image background as an isolated label when estimating the label prior. Finally, by taking the Dice score as a criterion to quantitatively assess the accuracy of segmentations, we compare the results with those of other methods, including joint fusion, majority voting, local weighted voting, majority voting based on patch, and the widely used Free Surfer whole-brain segmentation tool. It can be clearly seen that the proposed algorithm provides better results than the other methods. During the experiments, we make explorations about the influence of different parameters(including patch size, patch area, and the number of training subjects) on segmentation accuracy. 展开更多
关键词 label fusion Local weighted voting Patch-based Background analysis
原文传递
基于选举标签传播的非重叠社区挖掘算法
2
作者 连亚飞 黄发良 +1 位作者 汪焱 潘传迪 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期10-17,共8页
针对邻居节点选择规则过于简单的传统标签传播算法容易导致奇异解问题,从而难以适应大型复杂网络的社区挖掘,提出了基于日常生活选举模式的标签传播算法VLPNO,重新定义节点标签传播规则,使其在传播迭代过程中能依照竞选的方式自主地更... 针对邻居节点选择规则过于简单的传统标签传播算法容易导致奇异解问题,从而难以适应大型复杂网络的社区挖掘,提出了基于日常生活选举模式的标签传播算法VLPNO,重新定义节点标签传播规则,使其在传播迭代过程中能依照竞选的方式自主地更新标签,进而将网络划分为由领导者和跟随者组成的社区.实验结果表明,与LPA、SLPA与BMLPA相比较,VLPNO算法能够更快速有效地发现与真实网络社区更相吻合的社区结构. 展开更多
关键词 标签传播算法 选举标签 社区挖掘 复杂网络
原文传递
基于伪标签局部集成投票属性约简
3
作者 王东杰 《计算机与数字工程》 2021年第9期1777-1781,共5页
属性约简是粗糙集核心内容之一,然而,传统基于邻域粗糙集的局部约简算法具有以下两个问题:1)经典邻域粗糙集没有关注到半径变化对样本标签的影响,以致于不同标签样本被划分到相同邻域;2)传统的属性约简算法只有一个约束条件,缺乏适用性... 属性约简是粗糙集核心内容之一,然而,传统基于邻域粗糙集的局部约简算法具有以下两个问题:1)经典邻域粗糙集没有关注到半径变化对样本标签的影响,以致于不同标签样本被划分到相同邻域;2)传统的属性约简算法只有一个约束条件,缺乏适用性。为了解决这一难题,论文从局部视角出发,利用伪标签邻域粗糙集模型,构建了一种属性约简方法。实验选取五组UCI数据集,通过多个算法的对比分析,论文所提算法提高了分类性能。 展开更多
关键词 属性约简 集成投票 伪标签 分类性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部