The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When ...The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.展开更多
Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the int...Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the internal flowing fluid and the external marine environmental condition is derived. The effect of the internal flowing fluid on the response of VIV of the riser is studied by means of the Finite Element Method. The results show that the effect of the internal fluid velocity on the VIV of the riser is strong when the natural frequency of the riser is close to the vortex shedding frequency. In addition, the increase of the top tension can decrease the sensitivity of the riser to the internal fluid velocity.展开更多
For studying the characteristics of Steel Catenary Riser (SCR), a simplified pinned-pinned cable model of vibration is established. The natural frequencies, the normalized mode shapes and mode curvatures of the SCR ...For studying the characteristics of Steel Catenary Riser (SCR), a simplified pinned-pinned cable model of vibration is established. The natural frequencies, the normalized mode shapes and mode curvatures of the SCR are calculated. The fatigue damage of the SCR can be obtained by applying the modal superposition method combined with the parameters of S -N curve. For analyzing the relation between the current velocity and the SCR's fatigue damage induced by the vortex-induced vibration, ten different current states are evaluated. Then, some useful conclusions are drawn, especially an important phenomenon is revealed that the maximum fatigue damage in the riser usually occurs near the area of the boundary ends.展开更多
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derive...In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.展开更多
Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic ...Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter.展开更多
At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect ...At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan's wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite element approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be more pronounced with the increase of the span length and can be weakened in the presence of the axial tension.展开更多
The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain.The long-term stress histories of ...The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain.The long-term stress histories of the riser under VIVs are calculated and the mean stresses,the number of stress cycles and amplitudes are determined by the rainflow counting method.The Palmgren-Miner rule for cumulative damage theory with a specified S-N curve is used to estimate the fatigue life of the riser.The corresponding numerical programs numerical simulation of vortex-induced vibrations (NSVIV) which can be used to calculate the VIV response and fatigue life of the riser are compiled.Finally the influences of the riser's parameters such as flexural rigidity,top tension and internal flow velocity on the fatigue life of the riser are analyzed in detail and some conclusions are drawn.展开更多
A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations (VIV). Its nonlinear hydrodynamic effects on the coupled wake and structure oscil...A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations (VIV). Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-in, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.展开更多
Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components ...Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components on flutter and vortex-induced vibration (VIV), more than 60 cases were tested through a 1:50 scale section model. The test results indicates that the aerodynamic configuration and accessory components of streamline box girders can signifi- cantly affect the wind-induced vibration of bridge, which is in good agreement with the experience of past researchers. From the tests carried out, it is observed that if the horizontal angle of the inclined web of the streamline box girder is below 16°, the critical flutter wind speed of bridge will increase remarkably, and the VIV will diminish. The test results also show that the 15° inclined web can restrain the formation of vortex near the tail, and consequently improve the performance of aerodynamic stability of long-span bridges. Finally, a new streamline box girder with 15° inclined web was presented and strongly recommended in the aerodynamic configuration design of long-span bridges.展开更多
A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure inte...A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure interaction with an H-O type of non-staggered gridsincorporating the domain decomposition method (DDM), which could save the computational CPU time dueto re-meshing. The computational domain was divided into nine sub-domains including one ALEsub-domain and eight Eulerian sub-domains. The convection term and dissipation term in the N-Sequations were discretized using the third-order upwind compact scheme and the fourth-order centralcompact scheme, respectively. The motion of the cylinder was modeled by a spring-damper-mass systemand solved using the Runge-Kutta method. By simulating the non-linear fluid-structure interaction,the ''lock-in'', ''beating'' and ''phase switch'' phenomena were successfully captured, and the resultsagree with experimental data Furthermore, the vortex structure, the unsteady lift and drag on thecylinder, and the cylinder displacement at various natural frequency of the cylinder for Re = 200were discussed in detail, by which a jump transition of the wake structure was captured.展开更多
This paper aimed at describing numerical simulations of vortex-induced vibrations(VIVs) of a long flexible riser with different length-to-diameter ratio(aspect ratio) in uniform and shear currents. Three aspect ra...This paper aimed at describing numerical simulations of vortex-induced vibrations(VIVs) of a long flexible riser with different length-to-diameter ratio(aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D= 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics(CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function(RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line(IL) and cross-flow(CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3-(rd) order single mode. When the aspect ratio was 1 000, the modal weights of the 5-(th) and 6-(th) modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4-(th) and 5-(th) mode. While, the dominant mode in uniform flow is the 4-(th) order, and the dominant mode in shear flow is the 5-(th) order.展开更多
In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flo...In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.展开更多
The vortex-induced vibrations(VIV)is an important topic of study in many different scientific and engineering fields.While VIV can be of benefit in some cases,oftentimes,it is an undesirable phenomenon that can be qui...The vortex-induced vibrations(VIV)is an important topic of study in many different scientific and engineering fields.While VIV can be of benefit in some cases,oftentimes,it is an undesirable phenomenon that can be quite dangerous.In particular for offshore pipelines,VIV can lead to fatiguing of the pipe structure and can cause disastrous consequences if left unchecked.A number of different methods have been applied to the measurement of VIV,especially for the elongated,thin cylindrical structures.The use of fiber optic fiber Bragg gratings(FBGs)in particular has gained popularity over the recent years due to their distinct properties.However,FBGs are also very fragile and are susceptible to failure when placed in harsh environments without protection.In this paper,56 FBGs encapsulated in stainless steel tubes were applied to the measurement of VIV in a28-m model pipeline under controlled and uncontrolled conditions.Tests show that the encapsulated sensors possessed good sensitivity as well as fatigue life(>80000 cycles).The measurements from FBGs were also high enough to allow frequency domain analysis of the pipeline VIV under the two conditions.The authors conclude that the encapsulated FBGs are a viable tool for the study of VIV in pipeline structures.展开更多
There are many experimental studies dedicated to determining the effect of the proximity of a plane boundary on the vortex-induced vibration (VIV) of submarine pipeline spans, but they all only concerned the first mod...There are many experimental studies dedicated to determining the effect of the proximity of a plane boundary on the vortex-induced vibration (VIV) of submarine pipeline spans, but they all only concerned the first mode VIV motion of the pipe. In this paper, a pipe model, 16 mm in diameter, 2.6 m in length and with a mass ratio (mass/displaced mass) of 4.30, was tested in a current tank. The reduced velocity was in the range of 0-16.7 and gap ratios at the pipe ends were 4.0, 6.0 and 8.0. The response of the model was measured using optical fiber strain gauges. Results of response amplitude and frequency were presented and the transition from the first dominant mode to the second one was shown. In the tests, it was found that the response amplitude experienced a continuous transition between the two modes, but the dramatic increase in the response frequency appeared with the shift in dominant mode from the first mode to the second one as the flow velocity increased. As the gap ratio decreased, the shift in the dominant mode took place at a higher reduced velocity.展开更多
The in-line (IL) vortex-induced vibration (VIV) that occurs frequently in ocean engineering may cause severe fatigue damage in slender marine structures. To the best knowledge of the authors, in existing literatur...The in-line (IL) vortex-induced vibration (VIV) that occurs frequently in ocean engineering may cause severe fatigue damage in slender marine structures. To the best knowledge of the authors, in existing literatures, there is no efficient analytical model for predicting pure IL VIV. In this paper, a wake oscillator model capable of analyzing the IL VIV of slender marine structures has been developed. Two different kinds of van der Pol equations are used to describe the near wake dynamics related to the fluctuating nature of symmetric vortex shedding in the first excitation region and alternate vortex shedding in the second one. Some comparisons are carried out between the present model results and experimental data. It is found that many phenomena observed in experiments could be reproduced by the present wake oscillator model.展开更多
As a project supported by the National Natural Science Fotmdation of China, a model experiment on the vortex-induced vibration of practical risers transporting tluid in currents was conducted in the Physical Oceanogra...As a project supported by the National Natural Science Fotmdation of China, a model experiment on the vortex-induced vibration of practical risers transporting tluid in currents was conducted in the Physical Oceanography laboratory of ocean University of China in 2005. Because most of the offshore oil fields in China are in shallow water, the experiment was focused on the risers in shallow water. The similarity theory was used in the experiment to derive the experimental model from the practical model. Considering the internal flowing fluid and external marine environment, the dynamic response of the marine riser was measured. Corresponding numerical simulation was performed with the finite element method. Ccnaparisons were made between the results from the experiment and numerical simulation.展开更多
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t...Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.展开更多
The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil c...The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil coupling system generally has various instability modes, including the vertical and lateral on-bottom instabilities, the tunnel-erosion of the underlying soil and the subsequent vortex-induced vibrations(VIVs) of free-spanning pipelines. This paper reviews the recent advances of the slip-line field solutions to the bearing capacity, the flow-pipe-soil coupling mechanism and the prediction for the lateral instability, the multi-physical coupling analysis of the tunnel-erosion, and the coupling mechanics between the VIVs and the local scour. It is revealed that the mechanism competition always exists among various instability modes, e.g., the competition between the lateral-instability and the tunnel-erosion. Finally, the prospects and scientific challenges for predicting the instability of a long-distance submarine pipeline are discussed in the context of the deep-water oil and gas exploitations.展开更多
A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They a...A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.展开更多
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boun...In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No 10532070)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No KJCX2-YW-L07)the LNM Initial Funding for Young Investigators
文摘The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
文摘Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the internal flowing fluid and the external marine environmental condition is derived. The effect of the internal flowing fluid on the response of VIV of the riser is studied by means of the Finite Element Method. The results show that the effect of the internal fluid velocity on the VIV of the riser is strong when the natural frequency of the riser is close to the vortex shedding frequency. In addition, the increase of the top tension can decrease the sensitivity of the riser to the internal fluid velocity.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50921001)the National Basic Research Program of China (973 Program, Grant No. 2010CB832700)
文摘For studying the characteristics of Steel Catenary Riser (SCR), a simplified pinned-pinned cable model of vibration is established. The natural frequencies, the normalized mode shapes and mode curvatures of the SCR are calculated. The fatigue damage of the SCR can be obtained by applying the modal superposition method combined with the parameters of S -N curve. For analyzing the relation between the current velocity and the SCR's fatigue damage induced by the vortex-induced vibration, ten different current states are evaluated. Then, some useful conclusions are drawn, especially an important phenomenon is revealed that the maximum fatigue damage in the riser usually occurs near the area of the boundary ends.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z356 and No.2007AA09Z313)
文摘In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.
基金The project was financially supported bythe Tenth Five-Year Plan of the Chinese Academy of Sciences (Grant No.KJCX2-SW-L03) .
文摘Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter.
基金This Project was fincianlly supported by the National Natural Science Foundation of China (Grant No. 50379050)
文摘At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan's wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite element approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be more pronounced with the increase of the span length and can be weakened in the presence of the axial tension.
基金supported by the High Technology Research and Development Program of China (863 Program,Grant Nos.2006AA09Z356 and 2007AA09Z313)
文摘The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain.The long-term stress histories of the riser under VIVs are calculated and the mean stresses,the number of stress cycles and amplitudes are determined by the rainflow counting method.The Palmgren-Miner rule for cumulative damage theory with a specified S-N curve is used to estimate the fatigue life of the riser.The corresponding numerical programs numerical simulation of vortex-induced vibrations (NSVIV) which can be used to calculate the VIV response and fatigue life of the riser are compiled.Finally the influences of the riser's parameters such as flexural rigidity,top tension and internal flow velocity on the fatigue life of the riser are analyzed in detail and some conclusions are drawn.
基金Project supported by the National High Techology Research and Development Program of China (863 Program, Grant No2006AA09Z350)the Chinese Academy of Sciences (Grant No KJCX2-YW-L02)
文摘A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations (VIV). Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-in, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.
文摘Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components on flutter and vortex-induced vibration (VIV), more than 60 cases were tested through a 1:50 scale section model. The test results indicates that the aerodynamic configuration and accessory components of streamline box girders can signifi- cantly affect the wind-induced vibration of bridge, which is in good agreement with the experience of past researchers. From the tests carried out, it is observed that if the horizontal angle of the inclined web of the streamline box girder is below 16°, the critical flutter wind speed of bridge will increase remarkably, and the VIV will diminish. The test results also show that the 15° inclined web can restrain the formation of vortex near the tail, and consequently improve the performance of aerodynamic stability of long-span bridges. Finally, a new streamline box girder with 15° inclined web was presented and strongly recommended in the aerodynamic configuration design of long-span bridges.
文摘A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure interaction with an H-O type of non-staggered gridsincorporating the domain decomposition method (DDM), which could save the computational CPU time dueto re-meshing. The computational domain was divided into nine sub-domains including one ALEsub-domain and eight Eulerian sub-domains. The convection term and dissipation term in the N-Sequations were discretized using the third-order upwind compact scheme and the fourth-order centralcompact scheme, respectively. The motion of the cylinder was modeled by a spring-damper-mass systemand solved using the Runge-Kutta method. By simulating the non-linear fluid-structure interaction,the ''lock-in'', ''beating'' and ''phase switch'' phenomena were successfully captured, and the resultsagree with experimental data Furthermore, the vortex structure, the unsteady lift and drag on thecylinder, and the cylinder displacement at various natural frequency of the cylinder for Re = 200were discussed in detail, by which a jump transition of the wake structure was captured.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51490675,51379125,11432009 and 51579145)
文摘This paper aimed at describing numerical simulations of vortex-induced vibrations(VIVs) of a long flexible riser with different length-to-diameter ratio(aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D= 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics(CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function(RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line(IL) and cross-flow(CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3-(rd) order single mode. When the aspect ratio was 1 000, the modal weights of the 5-(th) and 6-(th) modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4-(th) and 5-(th) mode. While, the dominant mode in uniform flow is the 4-(th) order, and the dominant mode in shear flow is the 5-(th) order.
基金This project was financially supported by the High Technology Research and Developmant Programof China (GrantNo.2006AA09Z356) the National Natural Science Foundation of China (Grant No.503795)
文摘In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grand No.51121005)the National Natural Science Foundation of China(Grand No.51108059)+2 种基金the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(Grand No.51327003)the Special Project of China Earthquake Administration(Grand No.2015419014)China Scholarship Council(Grand No.201206060081)
文摘The vortex-induced vibrations(VIV)is an important topic of study in many different scientific and engineering fields.While VIV can be of benefit in some cases,oftentimes,it is an undesirable phenomenon that can be quite dangerous.In particular for offshore pipelines,VIV can lead to fatiguing of the pipe structure and can cause disastrous consequences if left unchecked.A number of different methods have been applied to the measurement of VIV,especially for the elongated,thin cylindrical structures.The use of fiber optic fiber Bragg gratings(FBGs)in particular has gained popularity over the recent years due to their distinct properties.However,FBGs are also very fragile and are susceptible to failure when placed in harsh environments without protection.In this paper,56 FBGs encapsulated in stainless steel tubes were applied to the measurement of VIV in a28-m model pipeline under controlled and uncontrolled conditions.Tests show that the encapsulated sensors possessed good sensitivity as well as fatigue life(>80000 cycles).The measurements from FBGs were also high enough to allow frequency domain analysis of the pipeline VIV under the two conditions.The authors conclude that the encapsulated FBGs are a viable tool for the study of VIV in pipeline structures.
基金supported by Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921001)
文摘There are many experimental studies dedicated to determining the effect of the proximity of a plane boundary on the vortex-induced vibration (VIV) of submarine pipeline spans, but they all only concerned the first mode VIV motion of the pipe. In this paper, a pipe model, 16 mm in diameter, 2.6 m in length and with a mass ratio (mass/displaced mass) of 4.30, was tested in a current tank. The reduced velocity was in the range of 0-16.7 and gap ratios at the pipe ends were 4.0, 6.0 and 8.0. The response of the model was measured using optical fiber strain gauges. Results of response amplitude and frequency were presented and the transition from the first dominant mode to the second one was shown. In the tests, it was found that the response amplitude experienced a continuous transition between the two modes, but the dramatic increase in the response frequency appeared with the shift in dominant mode from the first mode to the second one as the flow velocity increased. As the gap ratio decreased, the shift in the dominant mode took place at a higher reduced velocity.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP)(20100032120047)the Independent Innovation Fund of Tianjin University (2010XJ-0098)+2 种基金State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (1104)the National High Technology Research and Development Program of China(863 Program) ( 2012AA051705)the National Natural Science Foundation of China (51209161)
文摘The in-line (IL) vortex-induced vibration (VIV) that occurs frequently in ocean engineering may cause severe fatigue damage in slender marine structures. To the best knowledge of the authors, in existing literatures, there is no efficient analytical model for predicting pure IL VIV. In this paper, a wake oscillator model capable of analyzing the IL VIV of slender marine structures has been developed. Two different kinds of van der Pol equations are used to describe the near wake dynamics related to the fluctuating nature of symmetric vortex shedding in the first excitation region and alternate vortex shedding in the second one. Some comparisons are carried out between the present model results and experimental data. It is found that many phenomena observed in experiments could be reproduced by the present wake oscillator model.
基金This project was financially supported by the National Natural Science Foundation of China (Grant No.50379050)
文摘As a project supported by the National Natural Science Fotmdation of China, a model experiment on the vortex-induced vibration of practical risers transporting tluid in currents was conducted in the Physical Oceanography laboratory of ocean University of China in 2005. Because most of the offshore oil fields in China are in shallow water, the experiment was focused on the risers in shallow water. The similarity theory was used in the experiment to derive the experimental model from the practical model. Considering the internal flowing fluid and external marine environment, the dynamic response of the marine riser was measured. Corresponding numerical simulation was performed with the finite element method. Ccnaparisons were made between the results from the experiment and numerical simulation.
基金The work described in this paper was jointly supported by the National Natural Science Foundation of China (51478360, 51323013, and 50978204).
文摘Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372319,11232012)the Strategic Priority Research Program(Type-B)of CAS(Grant No.XDB22030000)
文摘The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil coupling system generally has various instability modes, including the vertical and lateral on-bottom instabilities, the tunnel-erosion of the underlying soil and the subsequent vortex-induced vibrations(VIVs) of free-spanning pipelines. This paper reviews the recent advances of the slip-line field solutions to the bearing capacity, the flow-pipe-soil coupling mechanism and the prediction for the lateral instability, the multi-physical coupling analysis of the tunnel-erosion, and the coupling mechanics between the VIVs and the local scour. It is revealed that the mechanism competition always exists among various instability modes, e.g., the competition between the lateral-instability and the tunnel-erosion. Finally, the prospects and scientific challenges for predicting the instability of a long-distance submarine pipeline are discussed in the context of the deep-water oil and gas exploitations.
基金supported by the National Natural Science Foundation of China (10532070)the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-YW-L07)the LNM Initial Funding for Young Investigators
文摘A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.
基金the National Natural Science Foundation of China (50509022, 10532070)Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-L02)
文摘In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger.