In light-sheet fluorescence microscopy,the axial resolution and field of view are mutually constrained.Axially swept light-sheet microscopy(ASLM)can decouple the trade-off,but the confocal detection scheme using a rol...In light-sheet fluorescence microscopy,the axial resolution and field of view are mutually constrained.Axially swept light-sheet microscopy(ASLM)can decouple the trade-off,but the confocal detection scheme using a rolling shutter also rejects fluorescence signals from the specimen in the field of interest,which sacrifices the photon efficiency.Here,we report a laterally swept light-sheet microscopy(LSLM)scheme in which the focused beam is first scanned along the axial direction and subsequently laterally swept with the rolling shutter.We show that LSLM can obtain a higher photon efficiency when similar axial resolution and field of view can be achieved.Moreover,based on the principle of image scanning microscopy,applying the pixel reassignment to the LSLM images,hereby named iLSLM,improves the optical sectioning.Both simulation and experimental results demonstrate the higher photon efficiency with similar axial resolution and optical sectioning.Our proposed scheme is suitable for volumetric imaging of specimens that are susceptible to photobleaching or phototoxicity.展开更多
基金supported by the National Natural Science Foundation of China(62005116 and 51720105015)the Science and Technology Innovation Commission of Shenzhen(KQTD20170810110913065 and 20200925174735005).
文摘In light-sheet fluorescence microscopy,the axial resolution and field of view are mutually constrained.Axially swept light-sheet microscopy(ASLM)can decouple the trade-off,but the confocal detection scheme using a rolling shutter also rejects fluorescence signals from the specimen in the field of interest,which sacrifices the photon efficiency.Here,we report a laterally swept light-sheet microscopy(LSLM)scheme in which the focused beam is first scanned along the axial direction and subsequently laterally swept with the rolling shutter.We show that LSLM can obtain a higher photon efficiency when similar axial resolution and field of view can be achieved.Moreover,based on the principle of image scanning microscopy,applying the pixel reassignment to the LSLM images,hereby named iLSLM,improves the optical sectioning.Both simulation and experimental results demonstrate the higher photon efficiency with similar axial resolution and optical sectioning.Our proposed scheme is suitable for volumetric imaging of specimens that are susceptible to photobleaching or phototoxicity.