During different growth periods,canopy size and density in orchards are variable,which need application conditions(flow rate and air flow)to be adjusted to match the canopy’s characteristics.In order to improve orcha...During different growth periods,canopy size and density in orchards are variable,which need application conditions(flow rate and air flow)to be adjusted to match the canopy’s characteristics.In order to improve orchard sprayer’s automatic operating performance,an automatic variable-rate orchard sprayer(VARS)fixed with 40 electromagnetic valves and 8 brushless fans was developed based on the canopy’s spatial dimensions.Each solenoid valve and brushless motor can be individually adjusted in real-time through pulse width modulation(PWM)signals emitted by a control system to adjust each nozzle’s spout and fan rotation speed.A high-precision laser scanning sensor(light detecting and ranging,LIDAR)was adopted as the detector to measure the canopy volume using the variable rate algorithm principle.Field experiments were conducted in an apple orchard,and conventional air blast sprayer(CABS)and directed air-jet sprayer(DAJS)were tested as a comparison.Results showed that on average,46%less spraying solution was applied compared to conventional applications,while penetration rate was similar to DAJS.Normalized deposition in the canopy with variable application was higher than that of conventional applications,indicating that electronic sprayers are more efficient than conventional sprayers.It was also observed that VARS could significantly reduce off-target loss.The field experiment showed that the newly developed variable-rate sprayer can greatly reduce pesticide use and protect the environment for the orchard fruit production,and also provide a reference for design and performance optimization for plant protection machinery.展开更多
The accurate evaluation of pore pressure and injected volume is crucial for the laboratory characterization of hydromechanical responses of rock fractures. This study reports a series of laboratory experiments to syst...The accurate evaluation of pore pressure and injected volume is crucial for the laboratory characterization of hydromechanical responses of rock fractures. This study reports a series of laboratory experiments to systematically demonstrate the effects of external temperature and dead volume on laboratory measurements of pore pressure and injected volume in a rock fracture. We characterize the hydraulic aperture of the fracture as a function of effective normal stress using the exponential aperture model.This model is then employed to predict the pore pressure change and injected volume in the fracture without the influences of external temperature and dead volume. The external temperature changes in the cyclic loading test due to the Joule-Thompson effect for fluids. The effect of external temperature on pore pressure change in the fracture can be well explained by thermal pressurization of fluids. Our results also show that the external dead volume can significantly lower the pore pressure change in the fracture during the cyclic loading test under undrained conditions. The injected volume can also be substantially enlarged due to the external dead volume in a typical pore pressure system. Internal measurement of the pore pressure in the fracture using a fiber optic sensor cannot exclude the influences of external temperature and dead volume, primarily because of the good hydraulic communication between the fracture and pore pressure system. This study suggests that the effects of external temperature and dead volume on pore pressure response and injected volume should be evaluated for accurate laboratory characterization and inter-laboratory comparison.展开更多
基金The authors acknowledge that this work was financially supported by Special Fund for Agro-scientific Research in Public Interest(No.201503130)Beijing Science and technology plan projects(No.D171100002317003)National Natural Science Foundation of China(31470099).
文摘During different growth periods,canopy size and density in orchards are variable,which need application conditions(flow rate and air flow)to be adjusted to match the canopy’s characteristics.In order to improve orchard sprayer’s automatic operating performance,an automatic variable-rate orchard sprayer(VARS)fixed with 40 electromagnetic valves and 8 brushless fans was developed based on the canopy’s spatial dimensions.Each solenoid valve and brushless motor can be individually adjusted in real-time through pulse width modulation(PWM)signals emitted by a control system to adjust each nozzle’s spout and fan rotation speed.A high-precision laser scanning sensor(light detecting and ranging,LIDAR)was adopted as the detector to measure the canopy volume using the variable rate algorithm principle.Field experiments were conducted in an apple orchard,and conventional air blast sprayer(CABS)and directed air-jet sprayer(DAJS)were tested as a comparison.Results showed that on average,46%less spraying solution was applied compared to conventional applications,while penetration rate was similar to DAJS.Normalized deposition in the canopy with variable application was higher than that of conventional applications,indicating that electronic sprayers are more efficient than conventional sprayers.It was also observed that VARS could significantly reduce off-target loss.The field experiment showed that the newly developed variable-rate sprayer can greatly reduce pesticide use and protect the environment for the orchard fruit production,and also provide a reference for design and performance optimization for plant protection machinery.
基金supported by the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,China (Grant No. SKLCRSM21KF002)supported by the Initiative and Networking Fund of Helmholtz Association (Germany) for the Helmholtz Young Investigator Group ARES (Contract No. VH-NG-1516)。
文摘The accurate evaluation of pore pressure and injected volume is crucial for the laboratory characterization of hydromechanical responses of rock fractures. This study reports a series of laboratory experiments to systematically demonstrate the effects of external temperature and dead volume on laboratory measurements of pore pressure and injected volume in a rock fracture. We characterize the hydraulic aperture of the fracture as a function of effective normal stress using the exponential aperture model.This model is then employed to predict the pore pressure change and injected volume in the fracture without the influences of external temperature and dead volume. The external temperature changes in the cyclic loading test due to the Joule-Thompson effect for fluids. The effect of external temperature on pore pressure change in the fracture can be well explained by thermal pressurization of fluids. Our results also show that the external dead volume can significantly lower the pore pressure change in the fracture during the cyclic loading test under undrained conditions. The injected volume can also be substantially enlarged due to the external dead volume in a typical pore pressure system. Internal measurement of the pore pressure in the fracture using a fiber optic sensor cannot exclude the influences of external temperature and dead volume, primarily because of the good hydraulic communication between the fracture and pore pressure system. This study suggests that the effects of external temperature and dead volume on pore pressure response and injected volume should be evaluated for accurate laboratory characterization and inter-laboratory comparison.