Ore forming process of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan deposits in Langshan Zhaertai Mesoproterozoic SEDEX metallogenic belt is closely related to the syndepositional volcanic activities based ...Ore forming process of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan deposits in Langshan Zhaertai Mesoproterozoic SEDEX metallogenic belt is closely related to the syndepositional volcanic activities based on the following facts: (1) The Sm Nd isochron age of the basic volcanic rocks varies from 1 491 Ma to 1 824 Ma (more than or close to the model age of the lead isotope of all sulfide minerals) in these deposits, with ε (Nd, t ) =(3.48-6.40)±0.80, whose REE composition is enriched in LREE and depleted in HREE, indicating that these volcanic rocks were derived from the mantle or lower crust. (2) The REE composition of some Pb Zn Py ores is also enriched in LREE and depleted in HREE. The chondrite normalized REE patterns are similar to those of the basic volcanic rocks. (3) In the lead isotope composition diagram of Doe and Zartman, most of sphalerite, galena, pyrite, pyrrhotite and chalcopyrite are plotted on both sides of the line for the mantle or between the lines for the mantle and lower crust. (4) Cobalt content of some pyrites is much higher than their nickel content ( w (Co)/ w (Ni)= 11.91- 12.19). (5) Some volcanic blocks and debrises have been picked out from some pyrite and pyrrhotite ores. (6) All Zn Pb Cu Fe sulfide orebodies in these deposits occur in the strata overlying the metamorphic volcanic rocks in the only second ore bearing formation. The Jiashengpan deposit lacks in syndepositional volcanic rocks in the host succession, only Pb and Zn occur without Cu, but the Dongshengmiao, Tanyaokou and Huogeqi deposits with syndepositonal volcanic rocks in the host succession contain Cu, indicating the relatively high ore forming temperatures, besides Pb and Zn. The syndepositional volcanic eruption directly supplied some ore forming metals and resulted in the secular geothermal anomaly favorable for the circulation of the submarine convective hydrothermal system, and in the precipitation of deep mineralizing fluids exhaling into the anoxide basins along the syndep展开更多
Two days after the March 11,2011,Mw 9.0 Tohoku-oki earthquake,Shinmoedake volcano,located on the Japanese island of Honshu,erupted.Was this eruption triggered by the Tohoku-oki earthquake?Could Mount Fuji and Changbai...Two days after the March 11,2011,Mw 9.0 Tohoku-oki earthquake,Shinmoedake volcano,located on the Japanese island of Honshu,erupted.Was this eruption triggered by the Tohoku-oki earthquake?Could Mount Fuji and Changbaishan volcanoes also be triggered to erupt?By calculating changes in the regional stress-strain field that resulted from the earthquake,we find that Mount Fuji,Shinmoedake and Changbaishan volcanoes are all located in regions of volumetric expansion.The volumetric expan-sions at a depth of 10 km are up to~220 nano-strain,~8 nano-strain,and~14 nano-strain,respectively,for the three volcanoes. The strain changes inferred from GPS co-seismic displacements also suggest that these three volcanoes are located in regions with surface areal expansion.Considering that the expansional stress may cause the opening of magma channels,exsolution of CO2 gases stored in magma,and a series of positive feedback effects,the Tohoku-oki earthquake may result in an increase in the activ-ity of these volcanoes.Attention should be paid to potential triggering of volcanic eruptions by stress changes induced by the Tohoku-oki earthquake.展开更多
The Port Island Formation(PIF), a typical Cretaceous red bed in Hong Kong, is dominated by non-fossiliferous, reddish clastic rocks, making it difficult to determine the sedimentary age of PIF precisely. Previous stud...The Port Island Formation(PIF), a typical Cretaceous red bed in Hong Kong, is dominated by non-fossiliferous, reddish clastic rocks, making it difficult to determine the sedimentary age of PIF precisely. Previous studies assigned the PIF to Late Cretaceous provisionally only on the basis of its stratigraphic sequence and lithology. This study identified a tuffite interlayer in the PIF and a zircon UPb age of 128.2±2.7 Ma by LA-ICP-MS method was obtained. It’s the first time to date the depositional age of the PIF with a reliable chronological constraint. With the support of stratigraphic evidence, we concluded that the geological age of PIF should be Early Cretaceous rather than Late Cretaceous. Based on the volcanic history of Hong Kong and Southeast China and the distribution of the PIF in Mirs Bay, it is believed that there was no volcanic activity in Hong Kong in ca. 128 Ma. The tuffite interlayer discovered in PIF was formed by the deposition of volcanic ash, which might originate from remote region outside Hong Kong, in an aquatic environment on Port Island. The identification of the tuffite interlayer, as the response to a volcanic event, has great significance not only to the studies of establishment and regional correlation of the strata system and the geological evolution in Hong Kong,but also to the study of volcanic activities in Southeast China.展开更多
基金This study is supported by the State"973"High-Tech Project( No. G19990 43 2 15 ) and the Key Project of the Former Ministry o
文摘Ore forming process of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan deposits in Langshan Zhaertai Mesoproterozoic SEDEX metallogenic belt is closely related to the syndepositional volcanic activities based on the following facts: (1) The Sm Nd isochron age of the basic volcanic rocks varies from 1 491 Ma to 1 824 Ma (more than or close to the model age of the lead isotope of all sulfide minerals) in these deposits, with ε (Nd, t ) =(3.48-6.40)±0.80, whose REE composition is enriched in LREE and depleted in HREE, indicating that these volcanic rocks were derived from the mantle or lower crust. (2) The REE composition of some Pb Zn Py ores is also enriched in LREE and depleted in HREE. The chondrite normalized REE patterns are similar to those of the basic volcanic rocks. (3) In the lead isotope composition diagram of Doe and Zartman, most of sphalerite, galena, pyrite, pyrrhotite and chalcopyrite are plotted on both sides of the line for the mantle or between the lines for the mantle and lower crust. (4) Cobalt content of some pyrites is much higher than their nickel content ( w (Co)/ w (Ni)= 11.91- 12.19). (5) Some volcanic blocks and debrises have been picked out from some pyrite and pyrrhotite ores. (6) All Zn Pb Cu Fe sulfide orebodies in these deposits occur in the strata overlying the metamorphic volcanic rocks in the only second ore bearing formation. The Jiashengpan deposit lacks in syndepositional volcanic rocks in the host succession, only Pb and Zn occur without Cu, but the Dongshengmiao, Tanyaokou and Huogeqi deposits with syndepositonal volcanic rocks in the host succession contain Cu, indicating the relatively high ore forming temperatures, besides Pb and Zn. The syndepositional volcanic eruption directly supplied some ore forming metals and resulted in the secular geothermal anomaly favorable for the circulation of the submarine convective hydrothermal system, and in the precipitation of deep mineralizing fluids exhaling into the anoxide basins along the syndep
基金supported by the State Key Laboratory of Earthquake Dynamics(LED2009A02)the National Natural Science Foundation of China(41090294)the Institute of Geology,China Earthquake Administration(IGCEA1011)
文摘Two days after the March 11,2011,Mw 9.0 Tohoku-oki earthquake,Shinmoedake volcano,located on the Japanese island of Honshu,erupted.Was this eruption triggered by the Tohoku-oki earthquake?Could Mount Fuji and Changbaishan volcanoes also be triggered to erupt?By calculating changes in the regional stress-strain field that resulted from the earthquake,we find that Mount Fuji,Shinmoedake and Changbaishan volcanoes are all located in regions of volumetric expansion.The volumetric expan-sions at a depth of 10 km are up to~220 nano-strain,~8 nano-strain,and~14 nano-strain,respectively,for the three volcanoes. The strain changes inferred from GPS co-seismic displacements also suggest that these three volcanoes are located in regions with surface areal expansion.Considering that the expansional stress may cause the opening of magma channels,exsolution of CO2 gases stored in magma,and a series of positive feedback effects,the Tohoku-oki earthquake may result in an increase in the activ-ity of these volcanoes.Attention should be paid to potential triggering of volcanic eruptions by stress changes induced by the Tohoku-oki earthquake.
基金supported by the Youth Innovation Promotion Association CAS (2017085)geological survey program of Agriculture, Fisheries and Conservation Department of Hong Kong Special Administrative Region (AFCD/SQ/92/14)
文摘The Port Island Formation(PIF), a typical Cretaceous red bed in Hong Kong, is dominated by non-fossiliferous, reddish clastic rocks, making it difficult to determine the sedimentary age of PIF precisely. Previous studies assigned the PIF to Late Cretaceous provisionally only on the basis of its stratigraphic sequence and lithology. This study identified a tuffite interlayer in the PIF and a zircon UPb age of 128.2±2.7 Ma by LA-ICP-MS method was obtained. It’s the first time to date the depositional age of the PIF with a reliable chronological constraint. With the support of stratigraphic evidence, we concluded that the geological age of PIF should be Early Cretaceous rather than Late Cretaceous. Based on the volcanic history of Hong Kong and Southeast China and the distribution of the PIF in Mirs Bay, it is believed that there was no volcanic activity in Hong Kong in ca. 128 Ma. The tuffite interlayer discovered in PIF was formed by the deposition of volcanic ash, which might originate from remote region outside Hong Kong, in an aquatic environment on Port Island. The identification of the tuffite interlayer, as the response to a volcanic event, has great significance not only to the studies of establishment and regional correlation of the strata system and the geological evolution in Hong Kong,but also to the study of volcanic activities in Southeast China.