多传感器图像融合技术在目标检测与跟踪领域中有广泛应用。提出了一种红外与可见光图像的新颖的特征级融合与运动目标跟踪方法。将目标轮廓用动态轮廓线表示,在目标跟踪过程中对于两类模式图像中的目标轮廓控制点向量,利用 B 样条形状...多传感器图像融合技术在目标检测与跟踪领域中有广泛应用。提出了一种红外与可见光图像的新颖的特征级融合与运动目标跟踪方法。将目标轮廓用动态轮廓线表示,在目标跟踪过程中对于两类模式图像中的目标轮廓控制点向量,利用 B 样条形状空间模型将目标轮廓的特征级融合转换为控制点向量差的 L2 范数平方极小化。这种方法不需要图像配准,降低了融合的计算复杂度。同时,使用了自适应 Kalman 滤波技术,提高了动态轮廓线特征搜索的准确性。对比跟踪实验表明,融合后可见光图像的平均跟踪误差减小了 56.96%。展开更多
为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-S...为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-SLAM2原有跟踪线程中实时地剔除处于动态区域掩模中的特征点。利用已有深度图和跟踪线程位姿估计的信息去除相机运动相关光流,然后聚类动态物体自身运动产生的光流幅值,从而实现高精度的动态区域掩模检测,并结合对极几何约束剔除局部建图线程中的动态路标点。在TUM和KITTI数据集上的测试结果表明,在高动态场景下,本文算法相较ORB-SLAM2、Detect-SLAM、DS-SLAM,定位精度平均提升97%、64%和44%。相较DynaSLAM,本文算法在一半的高动态场景中定位精度平均提升20%,这验证了本文算法在高动态场景中提升了系统定位精度和鲁棒性。展开更多
基于RGB-D的视觉SLAM(同时定位与建图)算法基本都假设环境是静态的,然而在实际环境中经常会出现动态物体,导致SLAM算法性能的下降.为此,本文提出一种基于线特征的RGB-D视觉里程计方法,通过计算直线特征的静态权重来剔除动态直线特征,并...基于RGB-D的视觉SLAM(同时定位与建图)算法基本都假设环境是静态的,然而在实际环境中经常会出现动态物体,导致SLAM算法性能的下降.为此,本文提出一种基于线特征的RGB-D视觉里程计方法,通过计算直线特征的静态权重来剔除动态直线特征,并根据剩余的直线特征估计相机位姿.本文方法既可以减小动态物体的影响,又能避免点特征过少而导致的跟踪失效.公共数据集实验结果表明,与现有的基于ORB(orientedFAST and rotated BRIEF)点特征的方法相比,本文方法减小了动态环境下的跟踪误差约30%,提高了视觉里程计在动态环境下的精度和鲁棒性.展开更多
文摘为提升动态场景中视觉SLAM(Simultaneous Localization and Mapping)系统的定位精度和鲁棒性,提出一种基于光流和实例分割的视觉SLAM方法。针对动态物体和静态背景光流方向的不一致性,提出一种高实时性动态区域掩模检测算法,从而在ORB-SLAM2原有跟踪线程中实时地剔除处于动态区域掩模中的特征点。利用已有深度图和跟踪线程位姿估计的信息去除相机运动相关光流,然后聚类动态物体自身运动产生的光流幅值,从而实现高精度的动态区域掩模检测,并结合对极几何约束剔除局部建图线程中的动态路标点。在TUM和KITTI数据集上的测试结果表明,在高动态场景下,本文算法相较ORB-SLAM2、Detect-SLAM、DS-SLAM,定位精度平均提升97%、64%和44%。相较DynaSLAM,本文算法在一半的高动态场景中定位精度平均提升20%,这验证了本文算法在高动态场景中提升了系统定位精度和鲁棒性。
文摘基于RGB-D的视觉SLAM(同时定位与建图)算法基本都假设环境是静态的,然而在实际环境中经常会出现动态物体,导致SLAM算法性能的下降.为此,本文提出一种基于线特征的RGB-D视觉里程计方法,通过计算直线特征的静态权重来剔除动态直线特征,并根据剩余的直线特征估计相机位姿.本文方法既可以减小动态物体的影响,又能避免点特征过少而导致的跟踪失效.公共数据集实验结果表明,与现有的基于ORB(orientedFAST and rotated BRIEF)点特征的方法相比,本文方法减小了动态环境下的跟踪误差约30%,提高了视觉里程计在动态环境下的精度和鲁棒性.