同时定位与建图(Simultaneous Localization and Mapping,SLAM)是机器人领域的研究热点,被认为是实现机器人自主运动的关键。传统的基于RGB-D摄像头的SLAM算法(RGB-D SLAM)采用SIFT(Scale-Invariant Feature Transform)特征描述符来计...同时定位与建图(Simultaneous Localization and Mapping,SLAM)是机器人领域的研究热点,被认为是实现机器人自主运动的关键。传统的基于RGB-D摄像头的SLAM算法(RGB-D SLAM)采用SIFT(Scale-Invariant Feature Transform)特征描述符来计算相机位姿,采用GPU加速的siftGPU算法克服SITF特征提取慢的缺点,但多数嵌入式设备缺乏足够的GPU运算能力,使其应用性受到局限。此外,常规算法在闭环检测时效率较低,实时性不强。针对上述问题,提出了一种结合ORB(oriented FAST and rotated BRIEF)特征与视觉词典的SLAM算法。在算法前端,首先提取相邻图像的ORB特征,然后利用k近邻(k-Nearest Neighbor,kNN)匹配找到对应的最临近与次临近匹配,接着采用比值检测与交叉检测剔除误匹配点,最后采用改进的PROSAC-PnP(Progressive Sample Consensus based Perspective-N-Point)算法进行相机姿态计算,得到对相机位姿的高精度估计。在后端,提出了一种基于视觉词典的闭环检测算法来消除机器人运动中的累计误差。通过闭环检测增加帧间约束,利用通用图优化工具进行位姿图优化,得到全局一致的相机位姿与点云。通过对标准fr1数据集的测试和对比,表明了该算法具有较强的鲁棒性。展开更多
针对传统滤波方法在解决移动机器人同时定位与地图构建(SLAM)中存在的累积误差问题,将图优化方法应用于前端和后端优化中,以提高移动机器人位姿估计和建图的准确性。运用ORB算法进行图像的特征提取与匹配,将图优化的方法应用到PnP问题...针对传统滤波方法在解决移动机器人同时定位与地图构建(SLAM)中存在的累积误差问题,将图优化方法应用于前端和后端优化中,以提高移动机器人位姿估计和建图的准确性。运用ORB算法进行图像的特征提取与匹配,将图优化的方法应用到PnP问题的求解中,实现了机器人位姿的准确估计。基于词典(Bag of words)的闭环检测算法来进行闭环检测,得到存在的大回环,同时利用相邻几帧的匹配关系实时检测邻近几帧之间可能存在的局部回环。用图优化的方法对这些回环进行优化,得到准确的运动轨迹和点云地图。实验结果表明:基于前后端图优化的RGB-D三维SLAM算法,在室内环境下具有良好的精度和实时性。展开更多
ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特...ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特征匹配的方法,以解决特征匹配时光照强度鲁棒性不足的问题。通过光束平差法(bundle adjustment)进行位姿优化后,基于贝叶斯滤波模型,根据当前场景构建视觉字典以完成回环检测,提高SLAM算法精度。实验结果表明,相比ORB-SLAM算法,在保证实时性不变的情况下,本文算法精度与光照强度鲁棒性有明显提升。展开更多
文摘同时定位与建图(Simultaneous Localization and Mapping,SLAM)是机器人领域的研究热点,被认为是实现机器人自主运动的关键。传统的基于RGB-D摄像头的SLAM算法(RGB-D SLAM)采用SIFT(Scale-Invariant Feature Transform)特征描述符来计算相机位姿,采用GPU加速的siftGPU算法克服SITF特征提取慢的缺点,但多数嵌入式设备缺乏足够的GPU运算能力,使其应用性受到局限。此外,常规算法在闭环检测时效率较低,实时性不强。针对上述问题,提出了一种结合ORB(oriented FAST and rotated BRIEF)特征与视觉词典的SLAM算法。在算法前端,首先提取相邻图像的ORB特征,然后利用k近邻(k-Nearest Neighbor,kNN)匹配找到对应的最临近与次临近匹配,接着采用比值检测与交叉检测剔除误匹配点,最后采用改进的PROSAC-PnP(Progressive Sample Consensus based Perspective-N-Point)算法进行相机姿态计算,得到对相机位姿的高精度估计。在后端,提出了一种基于视觉词典的闭环检测算法来消除机器人运动中的累计误差。通过闭环检测增加帧间约束,利用通用图优化工具进行位姿图优化,得到全局一致的相机位姿与点云。通过对标准fr1数据集的测试和对比,表明了该算法具有较强的鲁棒性。
文摘针对传统滤波方法在解决移动机器人同时定位与地图构建(SLAM)中存在的累积误差问题,将图优化方法应用于前端和后端优化中,以提高移动机器人位姿估计和建图的准确性。运用ORB算法进行图像的特征提取与匹配,将图优化的方法应用到PnP问题的求解中,实现了机器人位姿的准确估计。基于词典(Bag of words)的闭环检测算法来进行闭环检测,得到存在的大回环,同时利用相邻几帧的匹配关系实时检测邻近几帧之间可能存在的局部回环。用图优化的方法对这些回环进行优化,得到准确的运动轨迹和点云地图。实验结果表明:基于前后端图优化的RGB-D三维SLAM算法,在室内环境下具有良好的精度和实时性。
文摘ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特征匹配的方法,以解决特征匹配时光照强度鲁棒性不足的问题。通过光束平差法(bundle adjustment)进行位姿优化后,基于贝叶斯滤波模型,根据当前场景构建视觉字典以完成回环检测,提高SLAM算法精度。实验结果表明,相比ORB-SLAM算法,在保证实时性不变的情况下,本文算法精度与光照强度鲁棒性有明显提升。