开发了结构性质关联模型(QSPR),实现了基于烃类化合物的结构特征预测黏温特性的功能。搜集了254种烃类化合物不同温度下的黏度数据,选择改进的Andrade方程来描述烃类化合物的黏温特性曲线,并通过对实验数据进行回归,获得了化合物的Andr...开发了结构性质关联模型(QSPR),实现了基于烃类化合物的结构特征预测黏温特性的功能。搜集了254种烃类化合物不同温度下的黏度数据,选择改进的Andrade方程来描述烃类化合物的黏温特性曲线,并通过对实验数据进行回归,获得了化合物的Andrade方程参数B和T_0。在此基础上,采用分子质量和15个基团作为分子的结构特征参数,建立神经网络模型预测Andrade模型参数B和T_0,平均相对误差分别为3.59%和1.27%。通过所预测的Andrade模型参数计算化合物的黏温性能,预测值与实验数据相比绝对平均误差为0.42 m Pa·s。展开更多
文摘开发了结构性质关联模型(QSPR),实现了基于烃类化合物的结构特征预测黏温特性的功能。搜集了254种烃类化合物不同温度下的黏度数据,选择改进的Andrade方程来描述烃类化合物的黏温特性曲线,并通过对实验数据进行回归,获得了化合物的Andrade方程参数B和T_0。在此基础上,采用分子质量和15个基团作为分子的结构特征参数,建立神经网络模型预测Andrade模型参数B和T_0,平均相对误差分别为3.59%和1.27%。通过所预测的Andrade模型参数计算化合物的黏温性能,预测值与实验数据相比绝对平均误差为0.42 m Pa·s。