This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The frac...This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.展开更多
Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimat...Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimated for each deformation mode,and visco-plastic self-consistent modeling is used to reproduce the plastic deformation behavior of an Mg-3Al-lZn O-temper plate from 150 to 450℃.Twinning and basal slip have relatively low strain rate sensitivity,whereas secondary slip modes are highly strain rate sensitive at high temperature.The texture evolution and plastic anisotropy are modeled at different temperatures and strain rates.Results show that when the strain rate sensitivity is taken into account,compared with rate independent critical resolved shear stresses,the material parameters and predictions are different.In particular,this study shows that,for hot deformation,there is a critical strain rate above which secondary slip modes predominate,and beyond which tension twinning is activated.A similar transition is expected for modes that have different strain rate sensitivity.展开更多
The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-un...The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.展开更多
The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous mate...The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.展开更多
High-temperature pre-stretching experiments were carried out on the AZ31 Mg alloy at 723 K with strain levels of 2.54%,6.48%,10.92%,and 19.2%to alter the microstructure and texture for improving room-temperature forma...High-temperature pre-stretching experiments were carried out on the AZ31 Mg alloy at 723 K with strain levels of 2.54%,6.48%,10.92%,and 19.2%to alter the microstructure and texture for improving room-temperature formability.The results showed that the strain-hardening coefcient increased,while the Lankford value decreased.In addition,the Erichsen values of all pre-stretch sheets were enhanced compared with that of the as-received sheet.The maximum Erichsen value increased from 2.38 mm for the as-received sample to 4.03 mm for the 10.92%-stretched sample,corresponding to an improvement of 69.32%.This improvement was mainly attributed to the gradual increase in grain size,and the(0001)basal texture was weakened due to the activated non-basal slip as the high-temperature pre-stretching strain levels increased.The visco-plastic self-consistent analysis was performed on the as-received and high-temperature pre-stretched samples.Results confrmed the higher activity of the prismatic slip in 10.92%-stretched sample,leading to divergence and weakening of basal texture components.This results in an augmentation of the Schmid factor under diferent slip systems.Therefore,it can be concluded that high-temperature pre-stretching technology provided an efective method to enhance the formability of Mg alloy sheets.展开更多
In this paper, the compactions of the elasto-plastic and the visco-plastic granular assemblies are simulated using the finite element method. Governing equations for motion and deformation for particles, including cou...In this paper, the compactions of the elasto-plastic and the visco-plastic granular assemblies are simulated using the finite element method. Governing equations for motion and deformation for particles, including coupling of rigid body motion and deformation for deformable bodies, are investigated. An implicit discrete element method for block systems is developed to make visco-plastic analysis for the assemblies. Among particles, three different contact types, cohering, rubbing and sliding, are taken into account. To verify accuracy and efficiency of the numerical method, some numerical example is simulated and the results are in a satisfactory agreement with the solutions in literatures. The effects of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compact- tion on the compaction of the elasto-plastic and the visco-plastic aggregates are investigated. It is demonstrated that the effect of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compaction on the global behavior of the elasto-plastic the visco-plastic granular assemblies under compacting are considerable. The numerical model is extended to simulate the compaction of aggregates consisting of mixed particles of different viscous incompressible materials. It is indicated that, with minor modification, the method could be used in a variety of problems that can be represented using granular media, such as asphalt, polymers, aluminum, snow, food product, etc.展开更多
3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Choles...3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with thesolution of the equations for velocity increment by the conjugate gradient method is combined. Thistechnique, termed the shifted ICCG method, is then employed to solve the slab edging problem. Theperformance of this algorithm in terms of the number of iterations, friction variation, shiftedparameter psi and the results of simulation for processing parameters are analysed. Numerical testsand application of this technique verify the efficiency and stability of the shifted ICCG method inthe analysis of slab edging.展开更多
Heterogeneous dynamical stress-strain response of Armco-Fe was investigated at high strain rates through the Split Hopkinson Pressure Bar (SHPB) testing. It was found that the viscoplastic deformation in BCC ferrite...Heterogeneous dynamical stress-strain response of Armco-Fe was investigated at high strain rates through the Split Hopkinson Pressure Bar (SHPB) testing. It was found that the viscoplastic deformation in BCC ferrite grains is affected by the strain rate. Thermal softening and variation in crystal orientations under high-strain-rate loading were used in the elastic-viscoplastic modeling. The micromechanical analysis with self-consistent transition and homogenization was used for estimation of the global impact response of the material. The results from modeling were found in good agreement with the experimental data.展开更多
The plastic deformation behavior of new Mg-Gd-Y-Zn-Mn magnesium alloys gains great necessity to clarify and understand the mechanism deeply. In the present work,the tensile mechanical property test and visco-plastic s...The plastic deformation behavior of new Mg-Gd-Y-Zn-Mn magnesium alloys gains great necessity to clarify and understand the mechanism deeply. In the present work,the tensile mechanical property test and visco-plastic self-consistent (VPSC) model are used to investigate the activities of deformation modes of VW84M and VW94M magnesium alloys during the tensile deformation. The results show that the mechanical properties of the above extruded alloys are similar but VW94M has higher strength than VW84M after the same aging process. Compared with the extruded alloys,the as-aged alloys have significantly higher activation of pyramidal slip at the later stage of plastic deformation. In addition,the as-aged VW94M alloy with higher strength has the largest activity of pyramidal slip. In summary,the addition of Gd increases the critical resolved shear stress (CRSS)in each slip system of VW94M,while the increase in the strength and the decrease in the elongation of as-aged alloys are associated with the significant activation of pyramidal slip.展开更多
A numerical study is presented,using a homogenization technique to consider the plain strain problem of visco-plastic porous medium shaped by regularly distributed circular particles. Based on a rigid plastic material...A numerical study is presented,using a homogenization technique to consider the plain strain problem of visco-plastic porous medium shaped by regularly distributed circular particles. Based on a rigid plastic material,the paper derives the macroscopic constitutive laws for homogenous equivalent medium. By changing the shape parameter of circular particles,the effect of pore shape on macroscopic constitutive laws is explored. Yield surfaces with different pore shapes are obtained. About voids,a two-scale conception is introduced,which regards main void as macroscopic scale and secondary cavities as microscopic scale. The macroscopic potential involving main and secondary voids is achieved. The proposed macroscopic constitutive law taking microscopic features as influence factors is helpful for exploring the macroscopic mechanical properties of porous medium when numerical simulation is required.展开更多
This study is concerned with the problems of contact in the process of numerical simulation of sheet metal forming in rigid visco-plastic shell FEM. In respect of analysis of sheet deep drawing process,for the tool m...This study is concerned with the problems of contact in the process of numerical simulation of sheet metal forming in rigid visco-plastic shell FEM. In respect of analysis of sheet deep drawing process,for the tool model described by triangular elements, a kind of contact judging algorithm about the correlation between the node of deformed mesh and the triangular element of a tool is presented. In SPF/DB Lagrangian multiplier method is adopted to solve the contact problem between deformed meshes, and a new reliable practical dynamic contact checking algorithm is presented. As computation examples, the simulation results of metal sheet deep drawing and SPF/DB are introduced in this paper.展开更多
混凝土在宏观层次上属于各向同性材料,但在细观层次上可视为由粗骨料、砂浆以及二者界面组成的三相非均质复合材料。混凝土是一种典型的率敏感材料,不同应变率水平下存在不同的强度增长机制。从混凝土细观结构出发,提出了混凝土动态受...混凝土在宏观层次上属于各向同性材料,但在细观层次上可视为由粗骨料、砂浆以及二者界面组成的三相非均质复合材料。混凝土是一种典型的率敏感材料,不同应变率水平下存在不同的强度增长机制。从混凝土细观结构出发,提出了混凝土动态受力分析的刚体弹簧元(Rigid Body Spring Model,RBSM)方法,通过建立混凝土细观各相组成材料的粘弹塑性损伤本构模型,充分考虑Stefan效应在中低应变率水平下对混凝土力学性能的影响,模拟了混凝土的强度增长规律。对砂浆、混凝土试件的单轴受拉动态破坏分析表明,本文建立的动态弹簧元模型能较好地模拟混凝土强度随应变率增长而提高的规律,而且能够跟踪加载过程中混凝土内部的裂缝开展过程和最终破坏形态。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11790282,U1534204,and 11472179)the Natural Science Foundation of Hebei Province of China(No.A2016210099)
文摘This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.
基金Thanks go to C.Tome for sharing the VPSC code.This study was supported by the National Natural Science Foundation of China(51421001)the'111' Project(B16007)by the Ministry of Education.
文摘Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimated for each deformation mode,and visco-plastic self-consistent modeling is used to reproduce the plastic deformation behavior of an Mg-3Al-lZn O-temper plate from 150 to 450℃.Twinning and basal slip have relatively low strain rate sensitivity,whereas secondary slip modes are highly strain rate sensitive at high temperature.The texture evolution and plastic anisotropy are modeled at different temperatures and strain rates.Results show that when the strain rate sensitivity is taken into account,compared with rate independent critical resolved shear stresses,the material parameters and predictions are different.In particular,this study shows that,for hot deformation,there is a critical strain rate above which secondary slip modes predominate,and beyond which tension twinning is activated.A similar transition is expected for modes that have different strain rate sensitivity.
基金the financial support provided by the National Key R&D Program of China(Grant No.2023YFC3008400)National Natural Science Foundation of China(Grant No.42102317)Qin Chuangyuan“Scientist+Engineer”Team Construction Project of Shaanxi Province in China(Grant No.2023KXJ-178).
文摘The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.
基金the National Natural Science Foundation of China (No.59995440).
文摘The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.
基金supported by the National Natural Science Foundation of China(Nos.51704209,U1810208)the Central Government Guided Local Science and Technology Development Projects(No.YDZJSX2021A010)+3 种基金China Postdoctoral Science Foundation(No.2022M710541)the Projects of International Cooperation in Shanxi(No.201803D421086)the Shanxi Province Patent Promotion Implementation Fund(No.20200718)the Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802034).
文摘High-temperature pre-stretching experiments were carried out on the AZ31 Mg alloy at 723 K with strain levels of 2.54%,6.48%,10.92%,and 19.2%to alter the microstructure and texture for improving room-temperature formability.The results showed that the strain-hardening coefcient increased,while the Lankford value decreased.In addition,the Erichsen values of all pre-stretch sheets were enhanced compared with that of the as-received sheet.The maximum Erichsen value increased from 2.38 mm for the as-received sample to 4.03 mm for the 10.92%-stretched sample,corresponding to an improvement of 69.32%.This improvement was mainly attributed to the gradual increase in grain size,and the(0001)basal texture was weakened due to the activated non-basal slip as the high-temperature pre-stretching strain levels increased.The visco-plastic self-consistent analysis was performed on the as-received and high-temperature pre-stretched samples.Results confrmed the higher activity of the prismatic slip in 10.92%-stretched sample,leading to divergence and weakening of basal texture components.This results in an augmentation of the Schmid factor under diferent slip systems.Therefore,it can be concluded that high-temperature pre-stretching technology provided an efective method to enhance the formability of Mg alloy sheets.
文摘In this paper, the compactions of the elasto-plastic and the visco-plastic granular assemblies are simulated using the finite element method. Governing equations for motion and deformation for particles, including coupling of rigid body motion and deformation for deformable bodies, are investigated. An implicit discrete element method for block systems is developed to make visco-plastic analysis for the assemblies. Among particles, three different contact types, cohering, rubbing and sliding, are taken into account. To verify accuracy and efficiency of the numerical method, some numerical example is simulated and the results are in a satisfactory agreement with the solutions in literatures. The effects of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compact- tion on the compaction of the elasto-plastic and the visco-plastic aggregates are investigated. It is demonstrated that the effect of frictional condition, the initial solid volume ratio, the number of particles in the assembly, and different types of compaction on the global behavior of the elasto-plastic the visco-plastic granular assemblies under compacting are considerable. The numerical model is extended to simulate the compaction of aggregates consisting of mixed particles of different viscous incompressible materials. It is indicated that, with minor modification, the method could be used in a variety of problems that can be represented using granular media, such as asphalt, polymers, aluminum, snow, food product, etc.
基金supported by Huo Yingdong Young Teachers Foundation,Ministry of State Education of ChinaNational Natural Science Foundation of China(No.59904003).
文摘3-D rigid visco-plastic finite element method (FEM) is used in the analysisof metal forming processes, including strip and plate rolling, shape rolling, slab edging, specialstrip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with thesolution of the equations for velocity increment by the conjugate gradient method is combined. Thistechnique, termed the shifted ICCG method, is then employed to solve the slab edging problem. Theperformance of this algorithm in terms of the number of iterations, friction variation, shiftedparameter psi and the results of simulation for processing parameters are analysed. Numerical testsand application of this technique verify the efficiency and stability of the shifted ICCG method inthe analysis of slab edging.
基金supported by the National Natural Science Foundation of China(Nos.11372201 and 11672196)
文摘Heterogeneous dynamical stress-strain response of Armco-Fe was investigated at high strain rates through the Split Hopkinson Pressure Bar (SHPB) testing. It was found that the viscoplastic deformation in BCC ferrite grains is affected by the strain rate. Thermal softening and variation in crystal orientations under high-strain-rate loading were used in the elastic-viscoplastic modeling. The micromechanical analysis with self-consistent transition and homogenization was used for estimation of the global impact response of the material. The results from modeling were found in good agreement with the experimental data.
文摘The plastic deformation behavior of new Mg-Gd-Y-Zn-Mn magnesium alloys gains great necessity to clarify and understand the mechanism deeply. In the present work,the tensile mechanical property test and visco-plastic self-consistent (VPSC) model are used to investigate the activities of deformation modes of VW84M and VW94M magnesium alloys during the tensile deformation. The results show that the mechanical properties of the above extruded alloys are similar but VW94M has higher strength than VW84M after the same aging process. Compared with the extruded alloys,the as-aged alloys have significantly higher activation of pyramidal slip at the later stage of plastic deformation. In addition,the as-aged VW94M alloy with higher strength has the largest activity of pyramidal slip. In summary,the addition of Gd increases the critical resolved shear stress (CRSS)in each slip system of VW94M,while the increase in the strength and the decrease in the elongation of as-aged alloys are associated with the significant activation of pyramidal slip.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10972162)
文摘A numerical study is presented,using a homogenization technique to consider the plain strain problem of visco-plastic porous medium shaped by regularly distributed circular particles. Based on a rigid plastic material,the paper derives the macroscopic constitutive laws for homogenous equivalent medium. By changing the shape parameter of circular particles,the effect of pore shape on macroscopic constitutive laws is explored. Yield surfaces with different pore shapes are obtained. About voids,a two-scale conception is introduced,which regards main void as macroscopic scale and secondary cavities as microscopic scale. The macroscopic potential involving main and secondary voids is achieved. The proposed macroscopic constitutive law taking microscopic features as influence factors is helpful for exploring the macroscopic mechanical properties of porous medium when numerical simulation is required.
文摘This study is concerned with the problems of contact in the process of numerical simulation of sheet metal forming in rigid visco-plastic shell FEM. In respect of analysis of sheet deep drawing process,for the tool model described by triangular elements, a kind of contact judging algorithm about the correlation between the node of deformed mesh and the triangular element of a tool is presented. In SPF/DB Lagrangian multiplier method is adopted to solve the contact problem between deformed meshes, and a new reliable practical dynamic contact checking algorithm is presented. As computation examples, the simulation results of metal sheet deep drawing and SPF/DB are introduced in this paper.
文摘混凝土在宏观层次上属于各向同性材料,但在细观层次上可视为由粗骨料、砂浆以及二者界面组成的三相非均质复合材料。混凝土是一种典型的率敏感材料,不同应变率水平下存在不同的强度增长机制。从混凝土细观结构出发,提出了混凝土动态受力分析的刚体弹簧元(Rigid Body Spring Model,RBSM)方法,通过建立混凝土细观各相组成材料的粘弹塑性损伤本构模型,充分考虑Stefan效应在中低应变率水平下对混凝土力学性能的影响,模拟了混凝土的强度增长规律。对砂浆、混凝土试件的单轴受拉动态破坏分析表明,本文建立的动态弹簧元模型能较好地模拟混凝土强度随应变率增长而提高的规律,而且能够跟踪加载过程中混凝土内部的裂缝开展过程和最终破坏形态。