Modern datacenter servers hosting popular Internet services face significant and multi-facet challenges in performance and power control. The user-perceived performance is the result of a complex interaction of comple...Modern datacenter servers hosting popular Internet services face significant and multi-facet challenges in performance and power control. The user-perceived performance is the result of a complex interaction of complex workloads in a very complex underlying system. Highly dynamic and bursty workloads of Internet services fluctuate over multiple time scales, which has a significant impact on processing and power demands of datacenter servers. High-density servers apply virtualization technology for capacity planning and system manageability. Such virtuMized computer systems are increasingly large and complex. This paper surveys representative approaches to autonomic performance and power control on virtualized servers, which control the quality of service provided by virtualized resources, improve the energy efficiency of the underlying system, and reduce the burden of complex system management from human operators. It then presents three designed self-adaptive resource management techniques based on machine learning and control for percentile-based response time assurance, non-intrusive energy-efficient performance isolation, and joint performance and power guarantee on virtualized servers. The techniques were implemented and evaluated in a testbed of virtualized servers hosting benchmark applications. Finally, two research trends are identified and discussed for sustainable cloud computing in green datacenters.展开更多
基金supported in part by the National Science Foundation of USA under Grant Nos.CNS-0844983(CAREER Award)and CNS-1217979the National Natural Science Foundation of China under Grant No.61328203
文摘Modern datacenter servers hosting popular Internet services face significant and multi-facet challenges in performance and power control. The user-perceived performance is the result of a complex interaction of complex workloads in a very complex underlying system. Highly dynamic and bursty workloads of Internet services fluctuate over multiple time scales, which has a significant impact on processing and power demands of datacenter servers. High-density servers apply virtualization technology for capacity planning and system manageability. Such virtuMized computer systems are increasingly large and complex. This paper surveys representative approaches to autonomic performance and power control on virtualized servers, which control the quality of service provided by virtualized resources, improve the energy efficiency of the underlying system, and reduce the burden of complex system management from human operators. It then presents three designed self-adaptive resource management techniques based on machine learning and control for percentile-based response time assurance, non-intrusive energy-efficient performance isolation, and joint performance and power guarantee on virtualized servers. The techniques were implemented and evaluated in a testbed of virtualized servers hosting benchmark applications. Finally, two research trends are identified and discussed for sustainable cloud computing in green datacenters.