采用荧光显微技术,对2006年长江口及近海水域20个站点的表层及10m层或潜水体冬、春两季的浮游病毒丰度进行了检测,对浮游病毒丰度在季节(冬、春两季)、水平分布和垂直分布上的变化进行了探讨。调查区浮游病毒丰度在冬、春季节上并无明...采用荧光显微技术,对2006年长江口及近海水域20个站点的表层及10m层或潜水体冬、春两季的浮游病毒丰度进行了检测,对浮游病毒丰度在季节(冬、春两季)、水平分布和垂直分布上的变化进行了探讨。调查区浮游病毒丰度在冬、春季节上并无明显差异,但在水平分布上存在很大差异,河口区浮游病毒直接检测量(Virus Direct Count,VDC)达到107个/ml,近海水域VDC为106个/ml,河口区的浮游病毒丰度都明显高于近海水域病毒丰度(P<0.01)。在垂直分布上,冬、春两季长江口水域水深小于10m的站位,表层浮游病毒丰度与底层病毒丰度无明显差别,水深大于10m的站位,表层水样的浮游病毒丰度都高于10m水层病毒丰度,说明长江口浮游病毒的垂直分布与站位总水深有关。还通过比较各站点VDC与叶绿素a含量的数据,分析了二者之间的相关性:冬季浮游病毒丰度与叶绿素a含量成正相关性;春季浮游病毒丰度与叶绿素a含量成负相关性,但病毒丰度受叶绿素a含量的影响仅为10%—11%。展开更多
By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer o...By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid(HNA) and low nucleic acid(LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus(Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth. Although LNA did not show any association with environmental variables, it was a vital component of the microbial community. In contrast to previous studies, the total virioplankton concentration had a poor relationship with nutrient availability. The positive relationship between large-sized phytoplankton abundance and the V-I population confirmed that V-I was a phytoplankton-infecting viral subgroup. Although the V-II group(bacteriophages)was dominant in the virioplankton community, it was not related with prokaryotic abundance, which indicated factors other than hosts controlling V-II abundance or the uncertainty of virus-host coupling. With respect to the picophytoplankton community,our results implied that river input exerted a strong limitation to Syn distribution in the estuary, while picoeukaryotes(Euk) were numerically less abundant and showed a quite different distribution pattern from that of Syn, and hence presented ecological properties distinct from Syn in our two studied areas.展开更多
Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical p...Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.展开更多
In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and virio-plankton and their relationship with environmental variables in coastal and offshore waters,flow ...In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and virio-plankton and their relationship with environmental variables in coastal and offshore waters,flow cytometry(FCM) was used to ana-lyze microbial abundance of samples collected in summer from four depths at 36 stations in the North Yellow Sea(NYS).The data revealed spatial heterogeneity in microbial populations in the offshore and near-shore waters of the NYS during the summer.For the surface layer,picoeukaryotes were abundant in the near-shore waters,Synechococcus was abundant in the offshore areas,and bacte-rial and viral abundances were high in the near-shore waters around the Liaodong peninsula.In the near-shore waters,no significant vertical variation of picophytoplankton(0.2-2μm) abundance was found.However,the nanophytoplankton abundance was higher in the upper layers(from the surface to 10 m depth) than in the bottom layer.For the offshore waters,both pico-and nanophytoplankton(2-20μm) abundance decreased sharply with depth in the North Yellow Sea Cold Water Mass(NYSCWM).But,for the vertical dis-tribution of virus and bacteria abundance,no significant variation was observed in both near-shore and offshore waters.Autotrophic microbes were more sensitive to environmental change than heterotrophic microbes and viruses.Viruses showed a positive correla-tion with bacterial abundance,suggesting that the bacteriophage might be prominent for virioplankton(about 0.45μm) in summer in the NYS and that viral abundance might play an important role in microbial loop functions.展开更多
文摘采用荧光显微技术,对2006年长江口及近海水域20个站点的表层及10m层或潜水体冬、春两季的浮游病毒丰度进行了检测,对浮游病毒丰度在季节(冬、春两季)、水平分布和垂直分布上的变化进行了探讨。调查区浮游病毒丰度在冬、春季节上并无明显差异,但在水平分布上存在很大差异,河口区浮游病毒直接检测量(Virus Direct Count,VDC)达到107个/ml,近海水域VDC为106个/ml,河口区的浮游病毒丰度都明显高于近海水域病毒丰度(P<0.01)。在垂直分布上,冬、春两季长江口水域水深小于10m的站位,表层浮游病毒丰度与底层病毒丰度无明显差别,水深大于10m的站位,表层水样的浮游病毒丰度都高于10m水层病毒丰度,说明长江口浮游病毒的垂直分布与站位总水深有关。还通过比较各站点VDC与叶绿素a含量的数据,分析了二者之间的相关性:冬季浮游病毒丰度与叶绿素a含量成正相关性;春季浮游病毒丰度与叶绿素a含量成负相关性,但病毒丰度受叶绿素a含量的影响仅为10%—11%。
基金supported by the National Basic Research Program (973 Program) of China (Nos. 2015CB452905, 2015CB452903)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA11020205)+1 种基金Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry, SOA, (GCMAC1209)Public science and technology research funds projects of ocean (201105015-06)
文摘By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid(HNA) and low nucleic acid(LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus(Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth. Although LNA did not show any association with environmental variables, it was a vital component of the microbial community. In contrast to previous studies, the total virioplankton concentration had a poor relationship with nutrient availability. The positive relationship between large-sized phytoplankton abundance and the V-I population confirmed that V-I was a phytoplankton-infecting viral subgroup. Although the V-II group(bacteriophages)was dominant in the virioplankton community, it was not related with prokaryotic abundance, which indicated factors other than hosts controlling V-II abundance or the uncertainty of virus-host coupling. With respect to the picophytoplankton community,our results implied that river input exerted a strong limitation to Syn distribution in the estuary, while picoeukaryotes(Euk) were numerically less abundant and showed a quite different distribution pattern from that of Syn, and hence presented ecological properties distinct from Syn in our two studied areas.
基金Supported by the National Natural Science Foundation of China(Nos.42176116,41576126,41890851,U21A6001)the Natural Science Foundation of Guangdong Province(No.2017A030306020)+4 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302004)the Rising Star Foundation of the South China Sea Institute of Oceanology(No.NHXX2019ST0101)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018377)the Science and Technology Planning Project of Guangdong Province of China(No.2021B1212050023)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060503)。
文摘Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.
基金supported by the General Oceano-graphic Survey Project(908 Project)the Special Fund forPublic Welfare Industry(Oceanography)(Grant No.20080511)the CAS Hundred Talents Project‘The response mechanism of the typical gulf ecosystem to the environmental changes’
文摘In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and virio-plankton and their relationship with environmental variables in coastal and offshore waters,flow cytometry(FCM) was used to ana-lyze microbial abundance of samples collected in summer from four depths at 36 stations in the North Yellow Sea(NYS).The data revealed spatial heterogeneity in microbial populations in the offshore and near-shore waters of the NYS during the summer.For the surface layer,picoeukaryotes were abundant in the near-shore waters,Synechococcus was abundant in the offshore areas,and bacte-rial and viral abundances were high in the near-shore waters around the Liaodong peninsula.In the near-shore waters,no significant vertical variation of picophytoplankton(0.2-2μm) abundance was found.However,the nanophytoplankton abundance was higher in the upper layers(from the surface to 10 m depth) than in the bottom layer.For the offshore waters,both pico-and nanophytoplankton(2-20μm) abundance decreased sharply with depth in the North Yellow Sea Cold Water Mass(NYSCWM).But,for the vertical dis-tribution of virus and bacteria abundance,no significant variation was observed in both near-shore and offshore waters.Autotrophic microbes were more sensitive to environmental change than heterotrophic microbes and viruses.Viruses showed a positive correla-tion with bacterial abundance,suggesting that the bacteriophage might be prominent for virioplankton(about 0.45μm) in summer in the NYS and that viral abundance might play an important role in microbial loop functions.