Root tensile strength is an important factor controlling the performance of bio-slope stabilization works. Due to evapotranspiration and climate factors, the root moisture content and its suction can vary seasonally i...Root tensile strength is an important factor controlling the performance of bio-slope stabilization works. Due to evapotranspiration and climate factors, the root moisture content and its suction can vary seasonally in practice and may not equal soil suction. The influences of suction and root moisture contents were investigated on Chrysopogon zizanioides(vetiver grass) root tensile strength. The root specimens were equilibrated with moist air in different suction conditions(0, 10, 20, and 50 kPa), prior to root tension tests. The root-water characteristic curve or relationship between root moisture and suction, was determined. The increase in suction resulted in decreased tensile strengths of the grass roots, particularly those with diameter of about 0.2 mm, which constituted 50.7% of all roots. For 1 mm roots, the tensile strength appeared to be unaffected by suction increase. The average root tensile strengths were used to estimate the root cohesion in slope stability analysis to find variation of safety factors of a bioengineered slope in different suction conditions. The analysis showed that the critical condition of slope with the lowest factor of safety would happen when the soil suction was zero and the root suction was high. Such condition may occur during a heavy rain period after a prolonged drought.展开更多
基金the financial supports from the Chaipattana FoundationKasetsart University Research and Development Institute(KURDI)the scholarship for his PhD studies provided by the Faculty of Engineering,Kasetsart University
文摘Root tensile strength is an important factor controlling the performance of bio-slope stabilization works. Due to evapotranspiration and climate factors, the root moisture content and its suction can vary seasonally in practice and may not equal soil suction. The influences of suction and root moisture contents were investigated on Chrysopogon zizanioides(vetiver grass) root tensile strength. The root specimens were equilibrated with moist air in different suction conditions(0, 10, 20, and 50 kPa), prior to root tension tests. The root-water characteristic curve or relationship between root moisture and suction, was determined. The increase in suction resulted in decreased tensile strengths of the grass roots, particularly those with diameter of about 0.2 mm, which constituted 50.7% of all roots. For 1 mm roots, the tensile strength appeared to be unaffected by suction increase. The average root tensile strengths were used to estimate the root cohesion in slope stability analysis to find variation of safety factors of a bioengineered slope in different suction conditions. The analysis showed that the critical condition of slope with the lowest factor of safety would happen when the soil suction was zero and the root suction was high. Such condition may occur during a heavy rain period after a prolonged drought.