The field of therapeutic angiogenesis has been predominantly concentrated in modalities that incorporate pro-angiogenic growth factors and/or cells within polymeric constructs that are implanted into the ischemic regi...The field of therapeutic angiogenesis has been predominantly concentrated in modalities that incorporate pro-angiogenic growth factors and/or cells within polymeric constructs that are implanted into the ischemic region. There is growing evidence that construct architecture can significantly affect growth factor activity, cellular viability and differentiation potential. Electrospinning is an attractive but simple scaffold fabrication technique that offers several advantages over traditional fabrication approaches to prepare highly organized structures for therapeutic angiogenesis applications. We recently described the fabrication of nanofibrous scaffolds with aligned fiber orientation that directed cell migration and orientation (i.e.human umbilical vein endothelial cells). Herein we demonstrate the ability of bFGF containing nanofibrous gelatin B scaffolds with controlled fiber orientation to promote capillary formation in vivo. Aligned scaffolds loaded with bFGF induced the highest levels of reperfusion (73% increased in LDPI ratios by day 21 post ischemia induction) in comparison to all other groups including scaffolds with random fiber orientation. Furthermore, the newly formed vasculature, assessed by confocal microscopy, had a parallel alignment along the axis of the scaffold’s fibers. In contrast, no vessel directionality was observed in the animals treated with scaffolds with random fiber orientation in the presence or absence of bFGF.展开更多
Long gap peripheral nerve injuries usually reulting in life-changing problems for patients. Skeletal muscle derived-multipotent stem cells (Sk-MSCs) can differentiate into Schwann and perineurial/endoneurial cells, ...Long gap peripheral nerve injuries usually reulting in life-changing problems for patients. Skeletal muscle derived-multipotent stem cells (Sk-MSCs) can differentiate into Schwann and perineurial/endoneurial cells, vascular relating pericytes, and endothelial and smooth muscle cells in the damaged peripheral nerve niche. Application of the Sk-MSCs in the bridging conduit for repairing long nerve gap injury resulted favorable axonal regeneration, which showing superior effects than gold standard therapy--healthy nerve autograft. This means that it does not need to sacrifice of healthy nerves or loss of related functions for repairing peripheral nerve injury.展开更多
文摘The field of therapeutic angiogenesis has been predominantly concentrated in modalities that incorporate pro-angiogenic growth factors and/or cells within polymeric constructs that are implanted into the ischemic region. There is growing evidence that construct architecture can significantly affect growth factor activity, cellular viability and differentiation potential. Electrospinning is an attractive but simple scaffold fabrication technique that offers several advantages over traditional fabrication approaches to prepare highly organized structures for therapeutic angiogenesis applications. We recently described the fabrication of nanofibrous scaffolds with aligned fiber orientation that directed cell migration and orientation (i.e.human umbilical vein endothelial cells). Herein we demonstrate the ability of bFGF containing nanofibrous gelatin B scaffolds with controlled fiber orientation to promote capillary formation in vivo. Aligned scaffolds loaded with bFGF induced the highest levels of reperfusion (73% increased in LDPI ratios by day 21 post ischemia induction) in comparison to all other groups including scaffolds with random fiber orientation. Furthermore, the newly formed vasculature, assessed by confocal microscopy, had a parallel alignment along the axis of the scaffold’s fibers. In contrast, no vessel directionality was observed in the animals treated with scaffolds with random fiber orientation in the presence or absence of bFGF.
基金supported by a 2013 Tokai University School of Medicine,Project Research Grant
文摘Long gap peripheral nerve injuries usually reulting in life-changing problems for patients. Skeletal muscle derived-multipotent stem cells (Sk-MSCs) can differentiate into Schwann and perineurial/endoneurial cells, vascular relating pericytes, and endothelial and smooth muscle cells in the damaged peripheral nerve niche. Application of the Sk-MSCs in the bridging conduit for repairing long nerve gap injury resulted favorable axonal regeneration, which showing superior effects than gold standard therapy--healthy nerve autograft. This means that it does not need to sacrifice of healthy nerves or loss of related functions for repairing peripheral nerve injury.