The structure of the boundary layer affects the evolution of ozone(O3), and research into this structure will provide important insights for understanding photochemical pollution.In this study, we conducted a one-mont...The structure of the boundary layer affects the evolution of ozone(O3), and research into this structure will provide important insights for understanding photochemical pollution.In this study, we conducted a one-month observation(from June 15 to July 14, 2016) of the boundary layer meteorological factors as well as O3 and its precursors in Luancheng County,Shijiazhuang(37°53′N, 114°38′E). Our research showed that photochemical pollution in Shijiazhuang is serious, and the mean hourly maximum and mean 8-hr maximum O3 concentrations are 97.9 ± 26.1 and 84.4 ± 22.4 ppbV, respectively. Meteorological factors play a significant role in the formation of O3. High temperatures and southeasterly winds lead to elevated O3 values, and at moderate relative humidity(40%–50%) and medium boundary layer heights(1200–1500 m), O3 production sensitivity occurred in the transitional region between volatile organic compounds(VOC) and nitrogen oxides(NOx) limitations,and the O3 concentration was the highest. The vertical profiles of O3 were also measured by a tethered balloon. The results showed that a large amount of O3 was stored in the residual layer, and the concentration was positively correlated with the O3 concentration measured the previous day. During the daytime of the following day, the contribution of O3 stored in the residual layer to the boundary layer reached 27%± 7% on average.展开更多
Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Tim...Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.展开更多
To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutio...To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutions(5,10,20,30 km),nesting grids(15 and 5 km),different vertical resolutions(35-layers,28-layers,20-layers)and different top maximum pressures(1 000,2 000,3 500,5 000 Pa)had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak.The simulation results of typhoon track,wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed.The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track.Different horizontal and vertical resolutions have obvious effects on typhoon strength(defined by wind speed)and intensity(defined by sea level pressure,SLP),especially for sea level pressure.The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency.The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations.Through comparison and analysis,the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined,and the vertical layers is 35-layers,the top maximum pressure is 2 000 Pa.展开更多
Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both h...Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macao is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr I over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macao contributes little to local sea level change. In the future, the rate of SLR in Macao will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the --8.5 W m 2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65 118 cm--double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter.展开更多
基金supported by the National Key R&D Program of China(Nos.2017YFC0210000 and 2016YFC0203100)State Key Laboratory of Atmospheric Chemistry,Chinese Meteorological Administration(LAC/CMA)(No.2017A01)+4 种基金the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,Chinese Academy of Sciences(CAS)(No.CERAE201802)the National Natural Science Foundation of China(Nos.41705113,41877312 and 41675124)the National research program for key issues in air pollution control(No.DQGG0101)Beijing Major Science and Technology Project(No.Z181100005418014)Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.SJCX18_0327)
文摘The structure of the boundary layer affects the evolution of ozone(O3), and research into this structure will provide important insights for understanding photochemical pollution.In this study, we conducted a one-month observation(from June 15 to July 14, 2016) of the boundary layer meteorological factors as well as O3 and its precursors in Luancheng County,Shijiazhuang(37°53′N, 114°38′E). Our research showed that photochemical pollution in Shijiazhuang is serious, and the mean hourly maximum and mean 8-hr maximum O3 concentrations are 97.9 ± 26.1 and 84.4 ± 22.4 ppbV, respectively. Meteorological factors play a significant role in the formation of O3. High temperatures and southeasterly winds lead to elevated O3 values, and at moderate relative humidity(40%–50%) and medium boundary layer heights(1200–1500 m), O3 production sensitivity occurred in the transitional region between volatile organic compounds(VOC) and nitrogen oxides(NOx) limitations,and the O3 concentration was the highest. The vertical profiles of O3 were also measured by a tethered balloon. The results showed that a large amount of O3 was stored in the residual layer, and the concentration was positively correlated with the O3 concentration measured the previous day. During the daytime of the following day, the contribution of O3 stored in the residual layer to the boundary layer reached 27%± 7% on average.
基金Supported by National Natural Science Foundation of China(Grant No.51505390)Independent research project of TPL(Grant No.TPL1501)
文摘Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.
基金The National Natural Science Foundation of China under contract Nos 51809023,51839002 and 51879015the Open Research Foundation of the Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation,the Ministry of Water Resources under contract No.2018KJ03
文摘To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutions(5,10,20,30 km),nesting grids(15 and 5 km),different vertical resolutions(35-layers,28-layers,20-layers)and different top maximum pressures(1 000,2 000,3 500,5 000 Pa)had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak.The simulation results of typhoon track,wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed.The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track.Different horizontal and vertical resolutions have obvious effects on typhoon strength(defined by wind speed)and intensity(defined by sea level pressure,SLP),especially for sea level pressure.The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency.The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations.Through comparison and analysis,the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined,and the vertical layers is 35-layers,the top maximum pressure is 2 000 Pa.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955604)the National Outstanding Youth Science Fund Project of China (Grant No. 41425019)+1 种基金the National Natural Science Foundation of China (Grant Nos. 91337105, 41461144001, 41230527, and 41275083)Public science and technology research funds projects of ocean (201505013)
文摘Against a background of climate change, Macao is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macao, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macao is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr I over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macao contributes little to local sea level change. In the future, the rate of SLR in Macao will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the --8.5 W m 2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65 118 cm--double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter.