The thickness of vadose zone plays a critical role in vertical groundwater recharge. The decline of water table since the past decades due to long-term groundwater over-exploitation has resulted in deep vadose zone in...The thickness of vadose zone plays a critical role in vertical groundwater recharge. The decline of water table since the past decades due to long-term groundwater over-exploitation has resulted in deep vadose zone in North China Plain. One-dimensional variably saturated flow models were established by Hydrus-1D software and simulations were run under steady and continuous declining water table respectively to estimate the impact of increase in thickness of vadose zone on recharge process, quantity and recharge time. Luancheng area was selected to estimate recharge quantity considering steady and continuous declining water table. The simulation results show that the increase in thickness of vadose zone delays recharge process to water table. The recharge quantity decreases first and then remains stable with the decline of water table. Under the condition of declining water table, the evaluation of recharge by the flux at water table overestimates the recharge quantity. The average annual recharge rate of Luancheng area is 134 mm/a.展开更多
Vertical hydraulic gradient (VHG) provides detailed information on 3D groundwater flows in alluvial fans, but its regional mapping is complicated by a lack of piezometer nests and uncertainty in conventional well data...Vertical hydraulic gradient (VHG) provides detailed information on 3D groundwater flows in alluvial fans, but its regional mapping is complicated by a lack of piezometer nests and uncertainty in conventional well data. Especially, determining representative depth of well screen in each well is problematic. Here, a VHG map of the Toyohira River alluvial fan, Sapporo, Japan, is constructed based on groundwater table elevation (GTE), using available well-data of various screen lengths and depths. The water-level data after 1988, when subway constructions are mostly completed in the city, are divided into those of shallow wells (≤20 m deep), and those of deep wells (>20 m deep). First, the GTE map is generated by kriging interpolation of shallow well data with topographic drift. Next, the individual VHG value of each deep well is calculated using its top, middle, and bottom elevations of the screen depths, respectively. The VHG maps of three cases are then obtained using neighborhood kriging. The VHG map of the bottom screen depths has proven most valid by cross-validation. The VHG map better visualizes that downward flows of groundwater are predominant over the fan. Positive area of VHG is mostly vanished around the fan-toe, indicating urbanization effect such as artificial withdrawals. A negative peak of VHG corresponds to recharge area, and is seen along the distinct losing section in the river. The negative peak also expands upstream to the fan-apex where a basement is suddenly depressed.展开更多
基金financially supported by the National Basic Research Program of China (No. 2010CB428802)the National Natural Science Foundation of China (Nos. 41172218, 41272258)
文摘The thickness of vadose zone plays a critical role in vertical groundwater recharge. The decline of water table since the past decades due to long-term groundwater over-exploitation has resulted in deep vadose zone in North China Plain. One-dimensional variably saturated flow models were established by Hydrus-1D software and simulations were run under steady and continuous declining water table respectively to estimate the impact of increase in thickness of vadose zone on recharge process, quantity and recharge time. Luancheng area was selected to estimate recharge quantity considering steady and continuous declining water table. The simulation results show that the increase in thickness of vadose zone delays recharge process to water table. The recharge quantity decreases first and then remains stable with the decline of water table. Under the condition of declining water table, the evaluation of recharge by the flux at water table overestimates the recharge quantity. The average annual recharge rate of Luancheng area is 134 mm/a.
文摘Vertical hydraulic gradient (VHG) provides detailed information on 3D groundwater flows in alluvial fans, but its regional mapping is complicated by a lack of piezometer nests and uncertainty in conventional well data. Especially, determining representative depth of well screen in each well is problematic. Here, a VHG map of the Toyohira River alluvial fan, Sapporo, Japan, is constructed based on groundwater table elevation (GTE), using available well-data of various screen lengths and depths. The water-level data after 1988, when subway constructions are mostly completed in the city, are divided into those of shallow wells (≤20 m deep), and those of deep wells (>20 m deep). First, the GTE map is generated by kriging interpolation of shallow well data with topographic drift. Next, the individual VHG value of each deep well is calculated using its top, middle, and bottom elevations of the screen depths, respectively. The VHG maps of three cases are then obtained using neighborhood kriging. The VHG map of the bottom screen depths has proven most valid by cross-validation. The VHG map better visualizes that downward flows of groundwater are predominant over the fan. Positive area of VHG is mostly vanished around the fan-toe, indicating urbanization effect such as artificial withdrawals. A negative peak of VHG corresponds to recharge area, and is seen along the distinct losing section in the river. The negative peak also expands upstream to the fan-apex where a basement is suddenly depressed.