Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter...Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.展开更多
A fracture criterion derived from a microscopic point of view is proposed and has proved to be effective in the analysis of uniaxial tension. On the one hand, a method of predicting a ductile fracture is proposed usin...A fracture criterion derived from a microscopic point of view is proposed and has proved to be effective in the analysis of uniaxial tension. On the one hand, a method of predicting a ductile fracture is proposed using a three-dimensional void model and the assumption of velocity discontinuity. The relationship between the void volume fraction and the critical strain to fracture, calculated with the help of the new model, shows the same tendency as that obtained from the modified Thomason model. On the other hand, the mechanical and metallographic analyses of the uniaxial tension experiment are performed using four kinds of carbon steel. The relationship between the void volume fraction and the critical strain to fracture, calculated from the new model, agrees better with the result obtained from the experiment, rather than that calculated by the modified Thomason model, which confirms the validity of the ductile fracture criterion based on the three-dimensional void model.展开更多
The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in th...The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in the western zone of the study region,being 35―48 thick.High-velocity structure zones exist in the upper crust shallower than 20 km beneath the Sulu and Dabie regions.The cause of high-velocity zones is attributable to high-pressure metamorphic(HPM) and ultra-high-pressure metamorphic(UHPM) terranes with high velocity and density exhuming up to the upper crust in the Sulu and Dabie orogenies.Anomalous zones of low velocity are in the lower crust,about 30 km beneath the Sulu and Dabie regions.The Moho discontinuity is as deep as 38 km beneath the Dabie region,deeper than those in the surrounding areas.The Moho discontinuity beneath the Sulu orogenic region is also a little deeper than those in its vicinity,being about 32 km.The deep Moho discontinuity zone implies that the low crustal velocity structure zone is in that region.The low-velocity characteristics in the lower crust are probably related to the remnant crustal root of the old mountains due to the orogeny in the Sulu and Dabie regions.The high-velocity anomalous zones in the upper crust and low-velocity anomalous zones in the lower crust beneath the Sulu region are all located northeast of the northern segment of the Tan-Lu fault.However,the high-and low-velocity anomalous zones beneath the Dabie region are located southwest of the southern segment of the Tan-Lu fault.Such a distribution of the velocity-anomalous zones looks to be attributable a left lateral slip motion along the Tan-Lu fault.The distribution pattern of the velocity-anomalous zones may show some evidence for the left strike-slip motion regime of the Tan-Lu fault.展开更多
From April of 2001 to March of 2002, a passive seismic array experiment was car- ried out in the Dabie Shan and its adjacent region. In this experiment, totally 34 broadband seismic stations were deployed along a prof...From April of 2001 to March of 2002, a passive seismic array experiment was car- ried out in the Dabie Shan and its adjacent region. In this experiment, totally 34 broadband seismic stations were deployed along a profile across the Dabie Shan orogen and North-China platform. This profile is about 500 km long from Cuilin (34°40′N, 114°49′E), Henan Province, to Dajipu (30°20′N, 115°03′E), Hubei Province. The space between stations is about 3?8 km in the Dabie Shan orogenic belt and about 15?20 km in other area. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km depth along the profile are investigated in terms of the receiver function techniques (Liu et al., 1996, 2000). Our results show that the crust beneath the Dabie Shan orogen has an obviously asymmetric blocked structure in the direction perpendicular to the mountain strike. The maximal crustal thickness reaches to 42 km. The crust-mantle boundary has a dislocation structure correlated to the crustal blocks and the largest offset reaches to 8 km. In the kernel of the orogen exists a low-velocity body inside the crust, which is separated into two parts corresponding to the South Dabie and North Dabie on the surface, respectively. Probably a vertical divergent movement between both took place in history. The crust below this low-velocity area has a positive gradient velocity structure with the depth, and the upper mantle down to the depth of 70 km has the lower S-wave velocity than its both sides. Beneath the Dabie Shan, however, a high-velocity anomaly exists in the upper mantle below 70 km.展开更多
基金Foundation item: National Scientific and Technological Development Program (95-973-02-02) the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China and the State Natural Sciences Foundation of China (49874021).
文摘Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
基金This study was financially supported by the National Natural Science Foundation of China (No.50575143)the Research Fund for the Doctoral Program of Higher Education (No. 20040248005).
文摘A fracture criterion derived from a microscopic point of view is proposed and has proved to be effective in the analysis of uniaxial tension. On the one hand, a method of predicting a ductile fracture is proposed using a three-dimensional void model and the assumption of velocity discontinuity. The relationship between the void volume fraction and the critical strain to fracture, calculated with the help of the new model, shows the same tendency as that obtained from the modified Thomason model. On the other hand, the mechanical and metallographic analyses of the uniaxial tension experiment are performed using four kinds of carbon steel. The relationship between the void volume fraction and the critical strain to fracture, calculated from the new model, agrees better with the result obtained from the experiment, rather than that calculated by the modified Thomason model, which confirms the validity of the ductile fracture criterion based on the three-dimensional void model.
基金Supported partly by National Natural Science Foundation of China (Grant No.40674026)National Special Science Foundation of China (Grant No.200811037)
文摘The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in the western zone of the study region,being 35―48 thick.High-velocity structure zones exist in the upper crust shallower than 20 km beneath the Sulu and Dabie regions.The cause of high-velocity zones is attributable to high-pressure metamorphic(HPM) and ultra-high-pressure metamorphic(UHPM) terranes with high velocity and density exhuming up to the upper crust in the Sulu and Dabie orogenies.Anomalous zones of low velocity are in the lower crust,about 30 km beneath the Sulu and Dabie regions.The Moho discontinuity is as deep as 38 km beneath the Dabie region,deeper than those in the surrounding areas.The Moho discontinuity beneath the Sulu orogenic region is also a little deeper than those in its vicinity,being about 32 km.The deep Moho discontinuity zone implies that the low crustal velocity structure zone is in that region.The low-velocity characteristics in the lower crust are probably related to the remnant crustal root of the old mountains due to the orogeny in the Sulu and Dabie regions.The high-velocity anomalous zones in the upper crust and low-velocity anomalous zones in the lower crust beneath the Sulu region are all located northeast of the northern segment of the Tan-Lu fault.However,the high-and low-velocity anomalous zones beneath the Dabie region are located southwest of the southern segment of the Tan-Lu fault.Such a distribution of the velocity-anomalous zones looks to be attributable a left lateral slip motion along the Tan-Lu fault.The distribution pattern of the velocity-anomalous zones may show some evidence for the left strike-slip motion regime of the Tan-Lu fault.
基金the National Natural Science Foundation of China(Grant No.40074009) the Deutsche Forschungsgemein-schaft.
文摘From April of 2001 to March of 2002, a passive seismic array experiment was car- ried out in the Dabie Shan and its adjacent region. In this experiment, totally 34 broadband seismic stations were deployed along a profile across the Dabie Shan orogen and North-China platform. This profile is about 500 km long from Cuilin (34°40′N, 114°49′E), Henan Province, to Dajipu (30°20′N, 115°03′E), Hubei Province. The space between stations is about 3?8 km in the Dabie Shan orogenic belt and about 15?20 km in other area. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km depth along the profile are investigated in terms of the receiver function techniques (Liu et al., 1996, 2000). Our results show that the crust beneath the Dabie Shan orogen has an obviously asymmetric blocked structure in the direction perpendicular to the mountain strike. The maximal crustal thickness reaches to 42 km. The crust-mantle boundary has a dislocation structure correlated to the crustal blocks and the largest offset reaches to 8 km. In the kernel of the orogen exists a low-velocity body inside the crust, which is separated into two parts corresponding to the South Dabie and North Dabie on the surface, respectively. Probably a vertical divergent movement between both took place in history. The crust below this low-velocity area has a positive gradient velocity structure with the depth, and the upper mantle down to the depth of 70 km has the lower S-wave velocity than its both sides. Beneath the Dabie Shan, however, a high-velocity anomaly exists in the upper mantle below 70 km.