由于噪声的不确定性和自身的非线性特征,通过航位推算系统(DR)精确地估计车辆的状态是实际车辆组合导航中最困难的部分。提出了一种基于循环神经网络的方法,和传统的扩展卡尔曼滤波(EKF)方法相比,该方法不仅提高了系统定位的准确性和自...由于噪声的不确定性和自身的非线性特征,通过航位推算系统(DR)精确地估计车辆的状态是实际车辆组合导航中最困难的部分。提出了一种基于循环神经网络的方法,和传统的扩展卡尔曼滤波(EKF)方法相比,该方法不仅提高了系统定位的准确性和自适应抗干扰能力;而且不需要模型的具体解析形式,避免了复杂的 Jacobian 矩阵的计算,算法更简单,也更加易于实现。为了检验其有效性,将两种方法分别对车辆 DR 导航系统进行滤波仿真,仿真结果进一步表明该神经网络方法明显优于 EKF 方法,是车载 DR 导航中一种更理想的非线性滤波方法。展开更多
文摘由于噪声的不确定性和自身的非线性特征,通过航位推算系统(DR)精确地估计车辆的状态是实际车辆组合导航中最困难的部分。提出了一种基于循环神经网络的方法,和传统的扩展卡尔曼滤波(EKF)方法相比,该方法不仅提高了系统定位的准确性和自适应抗干扰能力;而且不需要模型的具体解析形式,避免了复杂的 Jacobian 矩阵的计算,算法更简单,也更加易于实现。为了检验其有效性,将两种方法分别对车辆 DR 导航系统进行滤波仿真,仿真结果进一步表明该神经网络方法明显优于 EKF 方法,是车载 DR 导航中一种更理想的非线性滤波方法。