This study estimated the current vegetation and soil carbon storage in China using a biogeochemical model driven with climate, soil and vegetation data at 0.5°latitude-longitude grid spatial resolution. The resul...This study estimated the current vegetation and soil carbon storage in China using a biogeochemical model driven with climate, soil and vegetation data at 0.5°latitude-longitude grid spatial resolution. The results indicate that the total carbon storage in China's vegetation and soils was 13.33 Gt C and 82.65 Gt C respectively, about 3% and 4% of the global total. The nationally mean vegetation and soil carbon densities were 1.47 kg C/m2 and 9.17 kg C/m2, respectively, differing greatly in various regions affected by climate, vegetation, and soil types. They were generally higher in the warm and wet Southeast China and Southwest China than in the arid Northwest China; whereas vegetation carbon density was the highest in the warm Southeast China and Southwest China, soil carbon density was the highest in the cold Northeast China and southeastern fringe of the Qinghai-Tibetan Plateau. These spatial patterns are clearly correlated with variations in the climate that regulates plant growth and soil organic matter decomposition, and show that vegetation and soil carbon densities are controlled by different climatic factors.展开更多
The increased frequency of climate extremes in recent years has profoundly affected terrestrial ecosystem functions and the welfare of human society. The carbon cycle is a key process of terrestrial ecosystem changes....The increased frequency of climate extremes in recent years has profoundly affected terrestrial ecosystem functions and the welfare of human society. The carbon cycle is a key process of terrestrial ecosystem changes. Therefore, a better understanding and assessment of the impacts of climate extremes on the terrestrial carbon cycle could provide an important scientific basis to facilitate the mitigation and adaption of our society to climate change. In this paper, we systematically review the impacts of climate extremes(e.g. drought, extreme precipitation, extreme hot and extreme cold) on terrestrial ecosystems and their mechanisms. Existing studies have suggested that drought is one of the most important stressors on the terrestrial carbon sink, and that it can inhibit both ecosystem productivity and respiration. Because ecosystem productivity is usually more sensitive to drought than respiration, drought can significantly reduce the strength of terrestrial ecosystem carbon sinks and even turn them into carbon sources. Large inter-model variations have been found in the simulations of drought-induced changes in the carbon cycle, suggesting the existence of a large gap in current understanding of the mechanisms behind the responses of ecosystem carbon balance to drought, especially for tropical vegetation. The effects of extreme precipitation on the carbon cycle vary across different regions. In general, extreme precipitation enhances carbon accumulation in arid ecosystems, but restrains carbon sequestration in moist ecosystems. However, current knowledge on the indirect effects of extreme precipitation on the carbon cycle through regulating processes such as soil carbon lateral transportation and nutrient loss is still limited. This knowledge gap has caused large uncertainties in assessing the total carbon cycle impact of extreme precipitation. Extreme hot and extreme cold can affect the terrestrial carbon cycle through various ecosystem processes. Note that the severity of such climate extremes depends greatly 展开更多
Using the Guancun River, an underground stream-fed river, in Rong'an County of Guangxi, China as a case study, the daily biochemical cycle was examined in this paper based on the data collected a weeklong via high re...Using the Guancun River, an underground stream-fed river, in Rong'an County of Guangxi, China as a case study, the daily biochemical cycle was examined in this paper based on the data collected a weeklong via high resolution data logger monitoring and high-frequency sampling. Furthermore, the loss of inorganic carbon along its flow path was estimated. Results show that chemical components of the groundwater input are quite stable, showing little change extent; while all of the chemical parameters from two downstream monitoring stations show diel variation over the monitoring period, suggesting that plant activity in the river has a strong influence on water chemistry of the river. The comparison of the input fluxes from the groundwater with the output fluxes of HCO~ estimated at the downstream monitoring station during the high-frequency sampling period shows a strong decrease of HCO~, indicating that the river is losing inorganic carbon along its flow path. The loss is estimated to be about 1,152 mmol/day/m of HCO~ which represent about 94.9 kg/day of inorganic carbon along the 1,350 m section of the Guancun River. It means that HCO~ entering the river from karst underground stream was either consumed by plants or trapped in the authigenic calcite and thus constitutes a natural sink of carbon for the Guancun karst system.展开更多
文摘This study estimated the current vegetation and soil carbon storage in China using a biogeochemical model driven with climate, soil and vegetation data at 0.5°latitude-longitude grid spatial resolution. The results indicate that the total carbon storage in China's vegetation and soils was 13.33 Gt C and 82.65 Gt C respectively, about 3% and 4% of the global total. The nationally mean vegetation and soil carbon densities were 1.47 kg C/m2 and 9.17 kg C/m2, respectively, differing greatly in various regions affected by climate, vegetation, and soil types. They were generally higher in the warm and wet Southeast China and Southwest China than in the arid Northwest China; whereas vegetation carbon density was the highest in the warm Southeast China and Southwest China, soil carbon density was the highest in the cold Northeast China and southeastern fringe of the Qinghai-Tibetan Plateau. These spatial patterns are clearly correlated with variations in the climate that regulates plant growth and soil organic matter decomposition, and show that vegetation and soil carbon densities are controlled by different climatic factors.
基金supported by the National Natural Science Foundation of China(Grant No.41530528)
文摘The increased frequency of climate extremes in recent years has profoundly affected terrestrial ecosystem functions and the welfare of human society. The carbon cycle is a key process of terrestrial ecosystem changes. Therefore, a better understanding and assessment of the impacts of climate extremes on the terrestrial carbon cycle could provide an important scientific basis to facilitate the mitigation and adaption of our society to climate change. In this paper, we systematically review the impacts of climate extremes(e.g. drought, extreme precipitation, extreme hot and extreme cold) on terrestrial ecosystems and their mechanisms. Existing studies have suggested that drought is one of the most important stressors on the terrestrial carbon sink, and that it can inhibit both ecosystem productivity and respiration. Because ecosystem productivity is usually more sensitive to drought than respiration, drought can significantly reduce the strength of terrestrial ecosystem carbon sinks and even turn them into carbon sources. Large inter-model variations have been found in the simulations of drought-induced changes in the carbon cycle, suggesting the existence of a large gap in current understanding of the mechanisms behind the responses of ecosystem carbon balance to drought, especially for tropical vegetation. The effects of extreme precipitation on the carbon cycle vary across different regions. In general, extreme precipitation enhances carbon accumulation in arid ecosystems, but restrains carbon sequestration in moist ecosystems. However, current knowledge on the indirect effects of extreme precipitation on the carbon cycle through regulating processes such as soil carbon lateral transportation and nutrient loss is still limited. This knowledge gap has caused large uncertainties in assessing the total carbon cycle impact of extreme precipitation. Extreme hot and extreme cold can affect the terrestrial carbon cycle through various ecosystem processes. Note that the severity of such climate extremes depends greatly
基金supported by the Special Fund for Public Benefit Scientific Research of Ministry of Land and Resources of China(No.201111022)IGCP/SIDA 598the China Geological Survey Projects (No.1212011087122,No.1212011220230)
文摘Using the Guancun River, an underground stream-fed river, in Rong'an County of Guangxi, China as a case study, the daily biochemical cycle was examined in this paper based on the data collected a weeklong via high resolution data logger monitoring and high-frequency sampling. Furthermore, the loss of inorganic carbon along its flow path was estimated. Results show that chemical components of the groundwater input are quite stable, showing little change extent; while all of the chemical parameters from two downstream monitoring stations show diel variation over the monitoring period, suggesting that plant activity in the river has a strong influence on water chemistry of the river. The comparison of the input fluxes from the groundwater with the output fluxes of HCO~ estimated at the downstream monitoring station during the high-frequency sampling period shows a strong decrease of HCO~, indicating that the river is losing inorganic carbon along its flow path. The loss is estimated to be about 1,152 mmol/day/m of HCO~ which represent about 94.9 kg/day of inorganic carbon along the 1,350 m section of the Guancun River. It means that HCO~ entering the river from karst underground stream was either consumed by plants or trapped in the authigenic calcite and thus constitutes a natural sink of carbon for the Guancun karst system.