The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models...The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models with fractional derivatives are investigated analytically, and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order.展开更多
A consistent focus in theoretical mechanics has been on how to apply Lagrange's equation to continuum mechanics.This paper uses the concept of a variational derivative and its laws of operation to investigate the ...A consistent focus in theoretical mechanics has been on how to apply Lagrange's equation to continuum mechanics.This paper uses the concept of a variational derivative and its laws of operation to investigate the derivation of Lagrange's equation,which is then applied to nonlinear elasto-dynamics.In accordance with the work-energy principle and the energy conservation law,kinetic and potential energies are proposed for rigid-elastic coupling dynamics,whose governing equation is established by manipulating Lagrange's equation.In addition,case studies are used to demonstrate the application of the proposed method to spacecraft dynamics.展开更多
For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a s...For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a structure-preserving method based on a discrete variational derivative method.Furthermore,to prevent the vertex concentration that may lead to numerical instability,we discretely introduce Deckelnick’s tangential velocity.Here,a modification term is introduced in the process of adding tangential velocity.This modified term enables the method to reproduce the equations’properties while preventing vertex concentration.Numerical experiments demonstrate that the proposed approach captures the equations’properties with high accuracy and avoids the concentration of vertices.展开更多
In this paper we present some results concerning the optimal shape design problem governed by the fourth-order variational inequalities. The problem can be considered as a model example for the design of the shapes fo...In this paper we present some results concerning the optimal shape design problem governed by the fourth-order variational inequalities. The problem can be considered as a model example for the design of the shapes for elastic-plastic problem. The computations are done by finite element method, and the performance criterion is minimized by the material derivative method. We also discuss the error estimates in the appropriate norm and present some numerical results. An example is used to clearly illustrate the essential elements of shape design problems.展开更多
Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different ...Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.展开更多
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51134018).
文摘The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models with fractional derivatives are investigated analytically, and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order.
基金supported by the National Natural Science Foundation of China(Grant No.10272034)
文摘A consistent focus in theoretical mechanics has been on how to apply Lagrange's equation to continuum mechanics.This paper uses the concept of a variational derivative and its laws of operation to investigate the derivation of Lagrange's equation,which is then applied to nonlinear elasto-dynamics.In accordance with the work-energy principle and the energy conservation law,kinetic and potential energies are proposed for rigid-elastic coupling dynamics,whose governing equation is established by manipulating Lagrange's equation.In addition,case studies are used to demonstrate the application of the proposed method to spacecraft dynamics.
基金This work was supported by JSPS KAKENHI Grant Nos.19K14590,21K18301,Japan.
文摘For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a structure-preserving method based on a discrete variational derivative method.Furthermore,to prevent the vertex concentration that may lead to numerical instability,we discretely introduce Deckelnick’s tangential velocity.Here,a modification term is introduced in the process of adding tangential velocity.This modified term enables the method to reproduce the equations’properties while preventing vertex concentration.Numerical experiments demonstrate that the proposed approach captures the equations’properties with high accuracy and avoids the concentration of vertices.
文摘In this paper we present some results concerning the optimal shape design problem governed by the fourth-order variational inequalities. The problem can be considered as a model example for the design of the shapes for elastic-plastic problem. The computations are done by finite element method, and the performance criterion is minimized by the material derivative method. We also discuss the error estimates in the appropriate norm and present some numerical results. An example is used to clearly illustrate the essential elements of shape design problems.
基金supported by CNPq and CAPES(Brazilian research funding agencies)Portuguese funds through the Center for Research and Development in Mathematics and Applications(CIDMA)the Portuguese Foundation for Science and Technology(FCT),within project UID/MAT/04106/2013
文摘Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.