利用常规观测、FY-2G、地面加密自动站和NCEP/NCAR(0. 25°×0. 25°)再分析资料,对2016年7月31日至8月1日新疆西部出现的一次极端特大暴雨过程进行分析。结果表明:暴雨发生在南亚高压单体型和"两脊一槽"稳定环...利用常规观测、FY-2G、地面加密自动站和NCEP/NCAR(0. 25°×0. 25°)再分析资料,对2016年7月31日至8月1日新疆西部出现的一次极端特大暴雨过程进行分析。结果表明:暴雨发生在南亚高压单体型和"两脊一槽"稳定环流形势下,暴雨区位于200 h Pa高空西南急流入口区右侧、700 h Pa低空偏东急流前部、500 h Pa偏南急流及700 h Pa辐合线附近。除中亚低槽自身携带的水汽外,在极为有利的高、中、低纬环流系统配合下孟加拉湾、南海和西太平洋向暴雨区输送的丰沛水汽也是此次极端特大暴雨的重要水汽来源。暴雨区西、东、南边界水汽输入均起着重要作用,尤其是西边界和东边界,占水汽输入总量的78. 4%。暴雨区上空高低空急流的配合以及纬向风的水平切变和经向风的垂直切变为暴雨区辐合上升运动和中尺度系统的产生和发展提供有利条件。中尺度对流云团生成后在引导气流的作用下不断向北移动发展,是造成暴雨的直接系统。发展、移动的低空急流、切变线、风场辐合线和地形辐合线及自天山迎风坡向北分布的多个具有强上升支的中尺度垂直环流不断将水汽和能量向上输送,经500 h Pa槽前强偏南气流向北输送至暴雨区上空。中低层暖平流、风切变和天山地形对天山迎风坡暴雨中尺度系统的产生和向上强烈发展有重要的作用。展开更多
利用常规观测资料、风云卫星资料、多普勒天气雷达资料、地面自动站资料、NECP/NCAR(1°×1°)再分析资料,对2015年6月23—26日南疆西部一次暴雨强对流过程的中尺度特征进行分析。结果表明:(1)南亚高压由带状分布向双体型...利用常规观测资料、风云卫星资料、多普勒天气雷达资料、地面自动站资料、NECP/NCAR(1°×1°)再分析资料,对2015年6月23—26日南疆西部一次暴雨强对流过程的中尺度特征进行分析。结果表明:(1)南亚高压由带状分布向双体型调整、中亚低涡形成后发展移入南疆是此次暴雨强对流发生的天气背景。强对流发生前各种对流参数变化明显,较强的对流有效位能、强烈的垂直风切变、0℃层和-20℃层高度适宜,这些均有利于短时大冰雹和短时强降水的发生;(2)除中亚低涡自身携带水汽外,孟加拉湾、阿拉伯海和南海水汽输送为强降水区提供了充足水汽源,尤其是中低层的东南风急流辐合为短时强降水提供了水汽辐合的动力条件;(3)23日短时大冰雹和短时强降水天气由生命史达7 h、最低TBB达-36℃的中-β尺度对流云团相继造成,其中,造成短时大冰雹的中-β尺度超级单体最强回波(60 d BZ)高度达4 km、50 d BZ回波高度达-20℃层高度,而短时强降水由断裂弓形回波、飑线型弓形回波下的中-β尺度对流风暴造成;25日短时强降水由层积混合云中2个最低TBB达-44℃的中-β尺度对流云团快速移过造成。展开更多
利用覆盖北京地区的地基GPS水汽监测网数据反演的地基GPS大气柱水汽含量(precipitable water vapor,PWV),分析了2009年7月3次暴雨天气过程中大气柱水汽含量的水平分布特征;利用高空、地面常规气象资料以及加密气象自动站观测资料计算地...利用覆盖北京地区的地基GPS水汽监测网数据反演的地基GPS大气柱水汽含量(precipitable water vapor,PWV),分析了2009年7月3次暴雨天气过程中大气柱水汽含量的水平分布特征;利用高空、地面常规气象资料以及加密气象自动站观测资料计算地面和高空比湿,结合温度、风等物理量分析3次暴雨天气过程中的大尺度水汽输送和中尺度局地辐合作用;对最大降水强度以及降水量的时间变化的分析表明:3次降水落区分布特征与降水前期大气柱水汽含量高值的水平分布较为一致;大气柱水汽含量曲线变化特征与各尺度天气系统造成的水汽输送和水汽辐合密切相关,大气柱水汽含量的大小与水汽来源密切相关;降水前4小时内大气柱水汽含量出现陡增,线性增速大于1.1mm/h,最大降水强度出现在大气柱水汽含量峰值出现后的1~2h。展开更多
文摘利用常规观测、FY-2G、地面加密自动站和NCEP/NCAR(0. 25°×0. 25°)再分析资料,对2016年7月31日至8月1日新疆西部出现的一次极端特大暴雨过程进行分析。结果表明:暴雨发生在南亚高压单体型和"两脊一槽"稳定环流形势下,暴雨区位于200 h Pa高空西南急流入口区右侧、700 h Pa低空偏东急流前部、500 h Pa偏南急流及700 h Pa辐合线附近。除中亚低槽自身携带的水汽外,在极为有利的高、中、低纬环流系统配合下孟加拉湾、南海和西太平洋向暴雨区输送的丰沛水汽也是此次极端特大暴雨的重要水汽来源。暴雨区西、东、南边界水汽输入均起着重要作用,尤其是西边界和东边界,占水汽输入总量的78. 4%。暴雨区上空高低空急流的配合以及纬向风的水平切变和经向风的垂直切变为暴雨区辐合上升运动和中尺度系统的产生和发展提供有利条件。中尺度对流云团生成后在引导气流的作用下不断向北移动发展,是造成暴雨的直接系统。发展、移动的低空急流、切变线、风场辐合线和地形辐合线及自天山迎风坡向北分布的多个具有强上升支的中尺度垂直环流不断将水汽和能量向上输送,经500 h Pa槽前强偏南气流向北输送至暴雨区上空。中低层暖平流、风切变和天山地形对天山迎风坡暴雨中尺度系统的产生和向上强烈发展有重要的作用。
文摘利用常规观测资料、风云卫星资料、多普勒天气雷达资料、地面自动站资料、NECP/NCAR(1°×1°)再分析资料,对2015年6月23—26日南疆西部一次暴雨强对流过程的中尺度特征进行分析。结果表明:(1)南亚高压由带状分布向双体型调整、中亚低涡形成后发展移入南疆是此次暴雨强对流发生的天气背景。强对流发生前各种对流参数变化明显,较强的对流有效位能、强烈的垂直风切变、0℃层和-20℃层高度适宜,这些均有利于短时大冰雹和短时强降水的发生;(2)除中亚低涡自身携带水汽外,孟加拉湾、阿拉伯海和南海水汽输送为强降水区提供了充足水汽源,尤其是中低层的东南风急流辐合为短时强降水提供了水汽辐合的动力条件;(3)23日短时大冰雹和短时强降水天气由生命史达7 h、最低TBB达-36℃的中-β尺度对流云团相继造成,其中,造成短时大冰雹的中-β尺度超级单体最强回波(60 d BZ)高度达4 km、50 d BZ回波高度达-20℃层高度,而短时强降水由断裂弓形回波、飑线型弓形回波下的中-β尺度对流风暴造成;25日短时强降水由层积混合云中2个最低TBB达-44℃的中-β尺度对流云团快速移过造成。
文摘利用覆盖北京地区的地基GPS水汽监测网数据反演的地基GPS大气柱水汽含量(precipitable water vapor,PWV),分析了2009年7月3次暴雨天气过程中大气柱水汽含量的水平分布特征;利用高空、地面常规气象资料以及加密气象自动站观测资料计算地面和高空比湿,结合温度、风等物理量分析3次暴雨天气过程中的大尺度水汽输送和中尺度局地辐合作用;对最大降水强度以及降水量的时间变化的分析表明:3次降水落区分布特征与降水前期大气柱水汽含量高值的水平分布较为一致;大气柱水汽含量曲线变化特征与各尺度天气系统造成的水汽输送和水汽辐合密切相关,大气柱水汽含量的大小与水汽来源密切相关;降水前4小时内大气柱水汽含量出现陡增,线性增速大于1.1mm/h,最大降水强度出现在大气柱水汽含量峰值出现后的1~2h。
文摘采用水平分辨率1°×1°的NCEP再分析资料、1°×1°的NCEP GDAS资料和2.5°×2.5°的NOAA大气环流资料,结合NOAA HYSPLIT v4.8轨迹模式对0604号热带风暴"Bilis"整个生命史的水汽输送特征进行模拟分析,并分析了"Bilis"暴雨增幅前和增幅后的水汽输送轨迹及不同来源的水汽贡献。结果表明,"Bilis"整个活动过程中主要有四支水汽输送通道,分别是源自索马里、孟加拉湾、120°E越赤道气流和东太平洋的水汽,其中源自索马里和孟加拉湾的西南水汽输送(偏南水汽通道)占主导地位,120°E越赤道气流和东太平洋的水汽是西南水汽随着"Bilis"环流逆时针旋转,自环流中心东北侧进入雨区(东北水汽通道),是低压环流与偏南风相互作用的结果。其中,偏南通道水汽大部分输送到850 h Pa以下的低层,自环流北侧输入的水汽则主要输送到暴雨区上空850 h Pa以上。对比暴雨增幅前后各通道的水汽贡献率发现,孟加拉湾西南气流输送的低纬水汽对此次暴雨增幅的形成、发展起重要作用。