In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be se...In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be separated from Sn effectively. Based on the above calculation, the industrial experiments of vacuum distillation of Sn-Pb alloy, Sn-Pb-Sb alloy, Sn-Pb-Sb-As alloy, crude Sn and Sn-Zn alloy with different contents were carried out. The experimental results show that Pb(>99% Pb) and Sn(≤0.003% Pb) were obtained simultaneously while Sn-Pb alloy was subjected to vacuum distillation; the crude Sn(>90% Sn, ≤ 2% Pb, ≤6% Sb) and crude Pb(≤2% Sn) were obtained simultaneously while a single vacuum distillation was carried out for Sn-Pb-Sb alloy; the Pb and Bi contents in the Sn ingot(99.99% Sn) achieve the grade A of GB/T 728—2010 standard, more than 50% of As and Sb was removed after vacuum distillation of crude Sn; Zn(<0.002% Sn) and Sn(about 3% Zn) were obtained while vacuum distillation of Sn-Zn alloy was conducted at 1173 K, 20-30 Pa for 8-10 h.展开更多
β-NiAl is a potential oxidation-resistant coating material to be operated at temperatures above 1 150 ℃. In this paper,β-NiAl coatings with 0-0.5 at% Dy are prepared by electron beam physical vapor deposition (EB-...β-NiAl is a potential oxidation-resistant coating material to be operated at temperatures above 1 150 ℃. In this paper,β-NiAl coatings with 0-0.5 at% Dy are prepared by electron beam physical vapor deposition (EB-PVD). Transient oxidation behavior of the coatings is investigated. At 1 200 ℃, only stable α-Al2O3 phase is observed on the 0.05 at% doped coating, whereas the phase transfomlation from θ-Al2O3 to α-Al2O3 occurs in the 0.5 at% Dy doped coating during 1 h oxidation. At 1 100 ℃, all the coatings reveal the transient transformation of θ-α in the early 15 min and the transformation for the 0.05 at% Dy doped coating is completed within 45 min, much earlier than that for the 0.5 at% Dy doped coating. Overdoping of Dy retards the transformation of θ-α. The undoped and overdoped coatings reveal the whisker structure of θ-Al2O3 even after 20 h oxidation at 1 100 ℃, while the 0.05 at% Dy coating reveals typical granulated structure of α-Al2O3.展开更多
Emerging two-dimensional(2D)materials have stimulated tremendous scientific and industrial interests due to their diverse and tunable physical,chemical,and mechanical properties.The scalable production of high-quality...Emerging two-dimensional(2D)materials have stimulated tremendous scientific and industrial interests due to their diverse and tunable physical,chemical,and mechanical properties.The scalable production of high-quality wafer-scale 2D materials has become significantly essential to bring us closer to practical industrial applications,particularly in electronic devices.Vapor-phase growth provides attractive opportunities for the synthesis of large-area and high-quality 2D materials.In this review,we will emphasize vapor-phase growth strategies from three aspects,including suppressing nucleation,seamless stitching,and evolutionary selection growth.We discuss the general understanding of the related fundamental mechanism and specific parameter optimization from precursors and substrate design to the adjusting of growth parameters(temperature and pressure).Meanwhile,we present other strategies to produce various kinds of wafer-scale 2D materials.Finally,we conclude the current challenges and future directions in this developing field.This work may inspire researchers to better design routes in the synthesis of wafer-scale 2D materials with high quality.展开更多
A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration o...A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration on structural and elec-trical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time,optical emis-sion spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties,Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism,why both OES and Raman can be used to diagnose the phase transition,was analyzed theoretically.展开更多
With many merits such as facile synthesis,economy,and relatively high theoretical capacity,Prussian blue analogs(PBAs)are considered promising cathode materials for sodium-ion batteries(SIBs).However,their practical a...With many merits such as facile synthesis,economy,and relatively high theoretical capacity,Prussian blue analogs(PBAs)are considered promising cathode materials for sodium-ion batteries(SIBs).However,their practical applications still suffer from a low actual specific capacity and inferior stability owing to the imperfect crystallinity,irreversible phase transition,and low intrinsic conductivity.Herein,a surface-modification technique for vapor-phase molecular self-assembly was developed to prepare Fe-based PBAs,specifically sodium iron hexacyanoferrate(NaFeHCF),with a uniform conductive polymer protective layer of polypyrrole(PPy)on the surface,resulting in NaFeHCF@PPy.The incorporation of a PPy protective layer not only improves the electronic conductivity of NaFeHCF@PPy,but also effectively mitigates the dissolution of Fe-ions during cycling.Specifically,this advanced vapor-phase technique avoids Fe^(2+)oxidation and Na^(+)loss during liquid-phase surface modification.The NaFeHCF@PPy exhibited a remarkably enhanced cycling performance,with capacity retentions of 85.6%and 69.1%over 500 and 1000 cycles,respectively,at 200 mA/g,along with a superior rate performance up to 5 A/g(fast kinetics).Additionally,by adopting this strategy for Mn-based PBAs(NaMnHCF@PPy),we further demonstrated the universality of this method for PBA cathodes in SIBs.展开更多
The development of functional relationships between the observed deposition rate and the experimental conditions is an important step toward understanding and optimizing low-pressure chemical vapor deposition(LPCVD)or...The development of functional relationships between the observed deposition rate and the experimental conditions is an important step toward understanding and optimizing low-pressure chemical vapor deposition(LPCVD)or low-pressure chemical vapor infiltration(LPCVI).In the field of ceramic matrix composites(CMCs),methyltrichlorosilane(CH3 SiCl3,MTS)is the most widely used source gas system for SiC,because stoichiometric SiC deposit can be facilitated at 900°C–1300°C.However,the reliability and accuracy of existing numerical models for these processing conditions are rarely reported.In this study,a comprehensive transport model was coupled with gas-phase and surface kinetics.The resulting gas-phase kinetics was confirmed via the measured concentration of gaseous species.The relationship between deposition rate and 24 gaseous species has been effectively evaluated by combining the special superiority of the novel extreme machine learning method and the conventional sticking coefficient method.Surface kinetics were then proposed and shown to reproduce the experimental results.The proposed simulation strategy can be used for different material systems.展开更多
基金Project(2014HA003)supported by the Cultivating Plan Program for the Technological Leading Talents of Yunnan Province,ChinaProject(51474116)supported by the National Natural Science Foundation of China+2 种基金Project(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of ChinaProject(20140355)supported by the Analytical Test Fund of Kunming University of Science and Technology,Chinasupported by the First-class Doctoral Dissertation Breeding Foundation of Kunming University of Science and Technology,China
文摘In order to recycle waste Sn-based alloys, the vapor-liquid phase equilibrium composition diagrams of Sn-Pb, Sn-Sb and Sn-Zn binary systems were calculated. The calculated results indicate that Pb, Sb and Zn can be separated from Sn effectively. Based on the above calculation, the industrial experiments of vacuum distillation of Sn-Pb alloy, Sn-Pb-Sb alloy, Sn-Pb-Sb-As alloy, crude Sn and Sn-Zn alloy with different contents were carried out. The experimental results show that Pb(>99% Pb) and Sn(≤0.003% Pb) were obtained simultaneously while Sn-Pb alloy was subjected to vacuum distillation; the crude Sn(>90% Sn, ≤ 2% Pb, ≤6% Sb) and crude Pb(≤2% Sn) were obtained simultaneously while a single vacuum distillation was carried out for Sn-Pb-Sb alloy; the Pb and Bi contents in the Sn ingot(99.99% Sn) achieve the grade A of GB/T 728—2010 standard, more than 50% of As and Sb was removed after vacuum distillation of crude Sn; Zn(<0.002% Sn) and Sn(about 3% Zn) were obtained while vacuum distillation of Sn-Zn alloy was conducted at 1173 K, 20-30 Pa for 8-10 h.
基金National Natural Science Foundation of China (50771009, 50731001) National Basic Research Program of China (2010CB631200) Research Fund for the Doctoral Program of Higher Education of China (20070006017)
文摘β-NiAl is a potential oxidation-resistant coating material to be operated at temperatures above 1 150 ℃. In this paper,β-NiAl coatings with 0-0.5 at% Dy are prepared by electron beam physical vapor deposition (EB-PVD). Transient oxidation behavior of the coatings is investigated. At 1 200 ℃, only stable α-Al2O3 phase is observed on the 0.05 at% doped coating, whereas the phase transfomlation from θ-Al2O3 to α-Al2O3 occurs in the 0.5 at% Dy doped coating during 1 h oxidation. At 1 100 ℃, all the coatings reveal the transient transformation of θ-α in the early 15 min and the transformation for the 0.05 at% Dy doped coating is completed within 45 min, much earlier than that for the 0.5 at% Dy doped coating. Overdoping of Dy retards the transformation of θ-α. The undoped and overdoped coatings reveal the whisker structure of θ-Al2O3 even after 20 h oxidation at 1 100 ℃, while the 0.05 at% Dy coating reveals typical granulated structure of α-Al2O3.
基金The research was supported by the National Natural Science Foundation of China(grants 21673161)the Science and Technology Department of Hubei Province(grant 2017AAA114)+1 种基金the Postdoctoral Innovation Talent Support Program of China(BX20180224)the Sino-German Center for Research Promotion(grant 1400).
文摘Emerging two-dimensional(2D)materials have stimulated tremendous scientific and industrial interests due to their diverse and tunable physical,chemical,and mechanical properties.The scalable production of high-quality wafer-scale 2D materials has become significantly essential to bring us closer to practical industrial applications,particularly in electronic devices.Vapor-phase growth provides attractive opportunities for the synthesis of large-area and high-quality 2D materials.In this review,we will emphasize vapor-phase growth strategies from three aspects,including suppressing nucleation,seamless stitching,and evolutionary selection growth.We discuss the general understanding of the related fundamental mechanism and specific parameter optimization from precursors and substrate design to the adjusting of growth parameters(temperature and pressure).Meanwhile,we present other strategies to produce various kinds of wafer-scale 2D materials.Finally,we conclude the current challenges and future directions in this developing field.This work may inspire researchers to better design routes in the synthesis of wafer-scale 2D materials with high quality.
基金Supported by the National Basic Research Program of China (Grant Nos. 2006CB202602 and 2006CB202603)
文摘A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration on structural and elec-trical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time,optical emis-sion spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties,Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism,why both OES and Raman can be used to diagnose the phase transition,was analyzed theoretically.
基金support of the National Natural Science Foundation of China(Nos.22379096,52271222,51971146,51971147,52171218,52371230)support of Shanghai Outstanding Academic Leaders Plan,the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00015)+2 种基金Shanghai Pujiang Program(No.21PJ1411100)Shanghai Rising-Star Program(Nos.20QA1407100,21QA1406500)the Shanghai Science and Technology Commission(Nos.21010503100,20ZR1438400,22ZR1443900).
文摘With many merits such as facile synthesis,economy,and relatively high theoretical capacity,Prussian blue analogs(PBAs)are considered promising cathode materials for sodium-ion batteries(SIBs).However,their practical applications still suffer from a low actual specific capacity and inferior stability owing to the imperfect crystallinity,irreversible phase transition,and low intrinsic conductivity.Herein,a surface-modification technique for vapor-phase molecular self-assembly was developed to prepare Fe-based PBAs,specifically sodium iron hexacyanoferrate(NaFeHCF),with a uniform conductive polymer protective layer of polypyrrole(PPy)on the surface,resulting in NaFeHCF@PPy.The incorporation of a PPy protective layer not only improves the electronic conductivity of NaFeHCF@PPy,but also effectively mitigates the dissolution of Fe-ions during cycling.Specifically,this advanced vapor-phase technique avoids Fe^(2+)oxidation and Na^(+)loss during liquid-phase surface modification.The NaFeHCF@PPy exhibited a remarkably enhanced cycling performance,with capacity retentions of 85.6%and 69.1%over 500 and 1000 cycles,respectively,at 200 mA/g,along with a superior rate performance up to 5 A/g(fast kinetics).Additionally,by adopting this strategy for Mn-based PBAs(NaMnHCF@PPy),we further demonstrated the universality of this method for PBA cathodes in SIBs.
基金the National Key R&D Program of China(Grants No.2017YFB0703200)National Natural Science Foundation of China(Grants Nos.51702100,51972268)China Postdoctoral Science Foundation(Grants No.2018M643075)for financial support。
文摘The development of functional relationships between the observed deposition rate and the experimental conditions is an important step toward understanding and optimizing low-pressure chemical vapor deposition(LPCVD)or low-pressure chemical vapor infiltration(LPCVI).In the field of ceramic matrix composites(CMCs),methyltrichlorosilane(CH3 SiCl3,MTS)is the most widely used source gas system for SiC,because stoichiometric SiC deposit can be facilitated at 900°C–1300°C.However,the reliability and accuracy of existing numerical models for these processing conditions are rarely reported.In this study,a comprehensive transport model was coupled with gas-phase and surface kinetics.The resulting gas-phase kinetics was confirmed via the measured concentration of gaseous species.The relationship between deposition rate and 24 gaseous species has been effectively evaluated by combining the special superiority of the novel extreme machine learning method and the conventional sticking coefficient method.Surface kinetics were then proposed and shown to reproduce the experimental results.The proposed simulation strategy can be used for different material systems.