Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray...Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.展开更多
The hilly regions of Nepal are potential for land sliding in rainy season. Lying between two major thrusts: Main Frontal Thrust (MFT) and Main Boundary Thrust (MBT), the rocks of Siwalik zone are very weak and fragile...The hilly regions of Nepal are potential for land sliding in rainy season. Lying between two major thrusts: Main Frontal Thrust (MFT) and Main Boundary Thrust (MBT), the rocks of Siwalik zone are very weak and fragile. Shallow and deep landslides are very common in the Siwalik zone during heavy and continuous rainfall. The landslide in the busy road and agglomerate settlements are destroying the life and properties every year in rainy season. This study aims to develop a landslide susceptibility map of Chatara-Barahakshetra area, Siwalik zones of eastern Nepal by the means of frequency ratio model. The paper utilized the remote sensing and GIS to develop a landslide susceptibility map. Total of 382 landslide polygons were mapped from Google earth and by field verification. The validation results showed that the success rate curve with 72.55 percentage of the area lying under the curve and the prediction rate curve with 71.73 percentage of the area lying under the curve indicating that prediction ability of the Frequency Ratio model. These landslide susceptibility maps can be used as a planning tool by prioritizing areas for controlling the landslide effects. More than 71% success rate indicate that frequency ratio model is suitable model for the landslide susceptibility in the study area.展开更多
The design and development of a wireless sensor network for soil moisture measurement in an unlevelled 10 km × 10 km area, is described. It was specifically deployed for the characterization of a reference area, ...The design and development of a wireless sensor network for soil moisture measurement in an unlevelled 10 km × 10 km area, is described. It was specifically deployed for the characterization of a reference area, in campaigns of calibration and validation of the space mission SMOS (Soil Moisture and Ocean Salinity), but the system is easily extensible to monitor other climatic or environmental variables, as well as to other regions of ecological interest. The network consists of a number of automatic measurement stations, strategically placed following soil homogeneity and land uses criteria. Every station includes acquisition, conditioning and communication systems. The electronics are battery operated with the help of solar cells, in order to have a total autonomous system. The collected data is then transmitted through long radio links, with ling ranges above 8 km. A standard PC linked to internet is finally used in order to control the whole network, to store the data, and to allow the remote access to the real-time data.展开更多
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November...Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November to May (NM) over SWIO were conducted. Dynamic parameters including vertical wind shear, mean zonal steering wind and vorticity at 850 mb were derived from NOAA (NCEP-NCAR) reanalysis 1 wind fields. Thermodynamic parameters including monthly and daily mean Sea Surface Temperature (SST), Outgoing Longwave Radiation (OLR) and equatorial Standard Oscillation Index (SOI) were used. Three types of Poison regression models (i.e. dynamic, thermodynamic and combined models) were developed and validated using the Leave One Out Cross Validation (LOOCV). Moreover, 2 × 2 square matrix contingency tables for model verification were used. The results revealed that, the observed and cross validated DJFM and NM TCs and TSs strongly correlated with each other (p ≤ 0.02) for all model types, with correlations (r) ranging from 0.62 - 0.86 for TCs and 0.52 - 0.87 for TSs, indicating great association between these variables. Assessment of the model skill for all model types of DJFM and NM TCs and TSs frequency revealed high skill scores ranging from 38% - 70% for TCs and 26% - 72% for TSs frequency, respectively. Moreover, results indicated that the dynamic and combined models had higher skill scores than the thermodynamic models. The DJFM and NM selected predictors explained the TCs and TSs variability by the range of 0.45 - 0.65 and 0.37 - 0.66, respectively. However, verification analysis revealed that all models were adequate for predicting the seasonal TCs and TSs, with high bias values ranging from 0.85 - 0.94. Conclusively, the study calls for more studies in TCs and TSs frequency and strengths for enhancing the performance of the March to May (MAM) and December to October (OND) seasonal rainfalls in the East African (EA) and Tanzania in particular.展开更多
Genomic selection has been demonstrated as a powerful technology to revolutionize animal breeding. However, marker density and minor allele frequency can affect the predictive ability of genomic estimated breeding val...Genomic selection has been demonstrated as a powerful technology to revolutionize animal breeding. However, marker density and minor allele frequency can affect the predictive ability of genomic estimated breeding values (GEBVs). To investigate the impact of marker density and minor allele frequency on predictive ability, we estimated GEBVs by constructing the different subsets of single nucleotide polymorphisms (SNPs) based on varying markers densities and minor allele frequency (MAF) for average daily gain (ADG), live weight (LW) and carcass weight (CW) in 1 059 Chinese Simmental beef cattle. Two strategies were proposed for SNP selection to construct different marker densities: 1) select evenly-spaced SNPs (Strategy 1 ), and 2) select SNPs with large effects estimated from BayesB (Strategy 2). Furthermore, predictive ability was assessed in terms of the correlation between predicted genomic values and corrected phenotypes from 10-fold cross-validation. Predictive ability for ADG, LW and CW using autosomal SNPs were 0.13+0.002, 0.21+0.003 and 0.25+0.003, respectively. In our study, the predictive ability increased dramatically as more SNPs were included in analysis until 200K for Strategy 1. Under Strategy 2, we found the predictive ability slightly increased when marker densities increased from 5K to 20K, which indicated the predictive ability of 20K (3% of 770K) SNPs with large effects was equal to the predictive ability of using all SNPs. For different MAF bins, we obtained the highest predictive ability for three traits with MAF bin 0.01-0.1. Our result suggested that designing a low-density chip by selecting low frequency markers with large SNP effects sizes should be helpful for commercial application in Chinese Simmental cattle.展开更多
文摘Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.
文摘The hilly regions of Nepal are potential for land sliding in rainy season. Lying between two major thrusts: Main Frontal Thrust (MFT) and Main Boundary Thrust (MBT), the rocks of Siwalik zone are very weak and fragile. Shallow and deep landslides are very common in the Siwalik zone during heavy and continuous rainfall. The landslide in the busy road and agglomerate settlements are destroying the life and properties every year in rainy season. This study aims to develop a landslide susceptibility map of Chatara-Barahakshetra area, Siwalik zones of eastern Nepal by the means of frequency ratio model. The paper utilized the remote sensing and GIS to develop a landslide susceptibility map. Total of 382 landslide polygons were mapped from Google earth and by field verification. The validation results showed that the success rate curve with 72.55 percentage of the area lying under the curve and the prediction rate curve with 71.73 percentage of the area lying under the curve indicating that prediction ability of the Frequency Ratio model. These landslide susceptibility maps can be used as a planning tool by prioritizing areas for controlling the landslide effects. More than 71% success rate indicate that frequency ratio model is suitable model for the landslide susceptibility in the study area.
文摘The design and development of a wireless sensor network for soil moisture measurement in an unlevelled 10 km × 10 km area, is described. It was specifically deployed for the characterization of a reference area, in campaigns of calibration and validation of the space mission SMOS (Soil Moisture and Ocean Salinity), but the system is easily extensible to monitor other climatic or environmental variables, as well as to other regions of ecological interest. The network consists of a number of automatic measurement stations, strategically placed following soil homogeneity and land uses criteria. Every station includes acquisition, conditioning and communication systems. The electronics are battery operated with the help of solar cells, in order to have a total autonomous system. The collected data is then transmitted through long radio links, with ling ranges above 8 km. A standard PC linked to internet is finally used in order to control the whole network, to store the data, and to allow the remote access to the real-time data.
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
文摘Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November to May (NM) over SWIO were conducted. Dynamic parameters including vertical wind shear, mean zonal steering wind and vorticity at 850 mb were derived from NOAA (NCEP-NCAR) reanalysis 1 wind fields. Thermodynamic parameters including monthly and daily mean Sea Surface Temperature (SST), Outgoing Longwave Radiation (OLR) and equatorial Standard Oscillation Index (SOI) were used. Three types of Poison regression models (i.e. dynamic, thermodynamic and combined models) were developed and validated using the Leave One Out Cross Validation (LOOCV). Moreover, 2 × 2 square matrix contingency tables for model verification were used. The results revealed that, the observed and cross validated DJFM and NM TCs and TSs strongly correlated with each other (p ≤ 0.02) for all model types, with correlations (r) ranging from 0.62 - 0.86 for TCs and 0.52 - 0.87 for TSs, indicating great association between these variables. Assessment of the model skill for all model types of DJFM and NM TCs and TSs frequency revealed high skill scores ranging from 38% - 70% for TCs and 26% - 72% for TSs frequency, respectively. Moreover, results indicated that the dynamic and combined models had higher skill scores than the thermodynamic models. The DJFM and NM selected predictors explained the TCs and TSs variability by the range of 0.45 - 0.65 and 0.37 - 0.66, respectively. However, verification analysis revealed that all models were adequate for predicting the seasonal TCs and TSs, with high bias values ranging from 0.85 - 0.94. Conclusively, the study calls for more studies in TCs and TSs frequency and strengths for enhancing the performance of the March to May (MAM) and December to October (OND) seasonal rainfalls in the East African (EA) and Tanzania in particular.
基金supported by the National Natural Science Foundation of China(31201782,31672384 and 31372294)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIPIAS03)+3 种基金the Cattle Breeding Innovative Research Team of Chinese Academy of Agricultural Sciences(cxgc-ias-03)the Key Technology R&D Program of China during the 12th Five-Year Plan period(2011BAD28B04)the National High Technology Research and Development Program of China(863 Program 2013AA102505-4)the Beijing Natural Science Foundation,China(6154032)
文摘Genomic selection has been demonstrated as a powerful technology to revolutionize animal breeding. However, marker density and minor allele frequency can affect the predictive ability of genomic estimated breeding values (GEBVs). To investigate the impact of marker density and minor allele frequency on predictive ability, we estimated GEBVs by constructing the different subsets of single nucleotide polymorphisms (SNPs) based on varying markers densities and minor allele frequency (MAF) for average daily gain (ADG), live weight (LW) and carcass weight (CW) in 1 059 Chinese Simmental beef cattle. Two strategies were proposed for SNP selection to construct different marker densities: 1) select evenly-spaced SNPs (Strategy 1 ), and 2) select SNPs with large effects estimated from BayesB (Strategy 2). Furthermore, predictive ability was assessed in terms of the correlation between predicted genomic values and corrected phenotypes from 10-fold cross-validation. Predictive ability for ADG, LW and CW using autosomal SNPs were 0.13+0.002, 0.21+0.003 and 0.25+0.003, respectively. In our study, the predictive ability increased dramatically as more SNPs were included in analysis until 200K for Strategy 1. Under Strategy 2, we found the predictive ability slightly increased when marker densities increased from 5K to 20K, which indicated the predictive ability of 20K (3% of 770K) SNPs with large effects was equal to the predictive ability of using all SNPs. For different MAF bins, we obtained the highest predictive ability for three traits with MAF bin 0.01-0.1. Our result suggested that designing a low-density chip by selecting low frequency markers with large SNP effects sizes should be helpful for commercial application in Chinese Simmental cattle.