期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Formation of Anthocyanic Vacuolar Inclusions in Arabidopsis thaliana and Implications for the Sequestration of Anthocyanin Pigments 被引量:15
1
作者 Lucille Pourcel Niloufer G. Irani +3 位作者 Yuhua LU Ken Riedl Steve Schwartz Erich Grotewold 《Molecular Plant》 SCIE CAS CSCD 2010年第1期78-90,共13页
Anthocyanins are flavonoid pigments that accumulate in the large central vacuole of most plants. Inside the vacuole, anthocyanins can be found uniformly distributed or as part of sub-vacuolar pigment bodies, the Antho... Anthocyanins are flavonoid pigments that accumulate in the large central vacuole of most plants. Inside the vacuole, anthocyanins can be found uniformly distributed or as part of sub-vacuolar pigment bodies, the Anthocyanic Vacuolar Inclusions (AVIs). Using Arabidopsis seedlings grown under anthocyanin-inductive conditions as a model to un- derstand how AVIs are formed, we show here that the accumulation of AVIs strongly correlates with the formation of cyanidin 3-glucoside (C3G) and derivatives. Arabidopsis mutants that fail to glycosylate anthocyanidins at the 5-0 position (Sgt mutant) accumulate AVIs in almost every epidermal cell of the cotyledons, as compared to wild-type seedlings, where only a small fraction of the cells show AVIs. A similar phenomenon is observed when seedlings are treated with vanadate. Highlighting a role for autophagy in the formation of the AVIs, we show that various mutants that interfere with the autophagic process (atg mutants) display lower numbers of AVIs, in addition to a reduced accumulation of anthocyanins. Interestingly, vanadate increases the numbers of AVIs in the atg mutants, suggesting that several pathways might participate in AVl formation. Taken together, our results suggest novel mechanisms for the formation of sub-vacuolar compartments capable of accumulating anthocyanin pigments. 展开更多
关键词 ANTHOCYANIN autophagy cyanidin 3-glucoside vacuolar inclusion vanadate.
原文传递
高等植物花色苷在液泡中的存在状态及其着色效应(英文) 被引量:3
2
作者 赵昶灵 张丽梅 刘福翠 《广西植物》 CAS CSCD 北大核心 2008年第3期395-401,共7页
综述了花色苷被摄入液泡的原因、花色苷在液泡中的存在状态及其对植物细胞的着色效应。花色苷在植物细胞质中合成后转运到液泡里是为了解除其对蛋白质和DNA等细胞功能分子的毒性。花色苷的液泡区隔化是花色苷在植物细胞中发挥正常功能... 综述了花色苷被摄入液泡的原因、花色苷在液泡中的存在状态及其对植物细胞的着色效应。花色苷在植物细胞质中合成后转运到液泡里是为了解除其对蛋白质和DNA等细胞功能分子的毒性。花色苷的液泡区隔化是花色苷在植物细胞中发挥正常功能的前提。在大多数植物中,花色苷在绝大多数情况下完全溶解在液泡里。但是,花色苷也能在液泡里形成颗粒,这些颗粒可以划分为花色苷体和花色苷液泡包涵体两类。花色苷体由膜包裹,其形成是液泡中小的有色囊泡逐渐合并的结果,发育完全的花色苷体为典型的球状、具比液泡更深的红色;液泡里的花色苷体具高密度,呈现为含高浓度花色苷的不溶性小球;花色苷体的存在可导致液泡的强烈色彩。花色苷液泡包涵体可能具备蛋白质基质,既无膜包裹又无内部结构,其形成是转运进液泡的花色苷与蛋白质基质结合的结果;液泡里的花色苷液泡包涵体形状不规则,象果冻;在花色苷液泡包涵体中,花色苷可能通过氢键连接于蛋白质基质的一个有限空间位点;花色苷液泡包涵体被认为是液泡中花色苷的"陷阱",优先摄取花色素3,5-二糖苷或酰化的花色苷;花色苷液泡包涵体的存在可增加液泡色彩的强度并导致"蓝化"。 展开更多
关键词 花色苷 存在状态 着色效应 花色苷体 花色苷液泡包涵体
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部