This paper considers the discrete-time GeoX/G/1 queueing model with unreliable service station and multiple adaptive delayed vacations from the perspective of reliability research. Following problems will be discussed...This paper considers the discrete-time GeoX/G/1 queueing model with unreliable service station and multiple adaptive delayed vacations from the perspective of reliability research. Following problems will be discussed: 1) The probability that the server is in a "generalized busy period" at time n; 2) The probability that the service station is in failure at time n, i.e., the transient unavailability of the service station, and the steady state unavailability of the service station; 3) The expected number of service station failures during the time interval (0, hi, and the steady state failure frequency of the service station; 4) The expected number of service station breakdowns in a server's "generalized busy period". Finally, the authors demonstrate that some common discrete-time queueing models with unreliable service station are special cases of the model discussed in this paper.展开更多
在离散时间Geo/Geo/1多重工作休假排队模型的基础上,加入了负顾客和N策略。这是一个新的模型,改进了已有的相关结论。工作休假是指在休假期间,服务员不是完全停止服务,而是低速率继续为顾客服务。这既可减少顾客因为不耐烦排队离开后所...在离散时间Geo/Geo/1多重工作休假排队模型的基础上,加入了负顾客和N策略。这是一个新的模型,改进了已有的相关结论。工作休假是指在休假期间,服务员不是完全停止服务,而是低速率继续为顾客服务。这既可减少顾客因为不耐烦排队离开后所造成的损失,也可提高经济效益。在文中的负顾客不接受服务,并只起一对一抵消队首正接受服务的顾客的作用,即服从RCH(Remove customer from head)策略。通过嵌入马尔可夫链方法,得到转移概率矩阵。并使用拟生灭过程及矩阵几何解方法得到队长的稳态分布:πkj=p(L=k,J=j),(k,j)∈Ω,进一步得出了系统队长的随机分解的结果:LN(z)=L0(z)Ld(z)。展开更多
In this paper,we develop an M/M/c queueing system in a Markovian environment with waiting servers,balking and reneging,under both synchronous single and multiple working vacation policies.When the system is in operati...In this paper,we develop an M/M/c queueing system in a Markovian environment with waiting servers,balking and reneging,under both synchronous single and multiple working vacation policies.When the system is in operative phase j,j=1,K¯,customers are served one by one.Once the system is empty,the servers have to wait a random period of time before leaving,causing the system to move to vacation phase 0 at which new arrivals can be served at lower rate.Using the method of the probability generating functions,we establish the steady-state analysis of the system.Special cases of the queueing model are presented.Then,explicit expressions of the useful system characteristics are derived.In addition,a cost model is constructed to define the optimal values of service rates,simultaneously,to minimize the total expected cost per unit time via a quadratic fit search method.Numerical examples are provided to display the impact of different system characteristics.展开更多
The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum numb...The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum number J of vacations,if the system remains empty after the end of a vacation.If there is at least one customer in the orbit at the end of a vacation,the server begins to serve the new arrivals or the arriving customers from the orbit.For this model,the authors focus on the steady-state analysis for the considered queueing system.Firstly,the authors obtain the generating functions of the number of customers in the orbit and in the system.Then,the authors obtain the closed-form expressions of some performance measures of the system and also give a stochastic decomposition result for the system size.Besides,the relationship between this discrete-time model and the corresponding continuous-time model is also investigated.Finally,some numerical results are provided.展开更多
In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and e...In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and enter regular busy period with probability 1 p (if there are customers in the queue) or continue the vacation with probability p. For this model, we drive the analytic expression of the stationary queue length and demonstrate stochastic decomposition structures of the stationary queue length and waiting time, also we obtain the additional queue length and the additional delay of this model. The results we got agree with the corresponding results for working vacation model with or without vacation interruption if we set p = 0 or p = 1, respectively.展开更多
This paper studies the operating characteristics of an M/G/1 queuing system with a randomized control policy and at most J vacations. After all the customers are served in the queue exhaustively, the server immediatel...This paper studies the operating characteristics of an M/G/1 queuing system with a randomized control policy and at most J vacations. After all the customers are served in the queue exhaustively, the server immediately takes at most J vacations repeatedly until at least N customers are waiting for service in the queue upon returning from a vacation. If the number of arrivals does not reach N by the end of the jth vacation, the server remains idle in the system until the number of arrivals in the queue reaches N. If the number of customers in the queue is exactly accumulated N since the server remains idle or returns from vacation, the server is activated for services with probability p and deactivated with probability (l-p). For such variant vacation model, other important system characteristics are derived, such as the expected number of customers, the expected length of the busy and idle period, and etc. Following the construction of the expected cost function per unit time, an efficient and fast procedure is developed for searching the joint optimum thresholds (N*,J*) that minimize the cost function. Some numerical examples are also presented.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos. 71171138,70871084the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.200806360001
文摘This paper considers the discrete-time GeoX/G/1 queueing model with unreliable service station and multiple adaptive delayed vacations from the perspective of reliability research. Following problems will be discussed: 1) The probability that the server is in a "generalized busy period" at time n; 2) The probability that the service station is in failure at time n, i.e., the transient unavailability of the service station, and the steady state unavailability of the service station; 3) The expected number of service station failures during the time interval (0, hi, and the steady state failure frequency of the service station; 4) The expected number of service station breakdowns in a server's "generalized busy period". Finally, the authors demonstrate that some common discrete-time queueing models with unreliable service station are special cases of the model discussed in this paper.
文摘在离散时间Geo/Geo/1多重工作休假排队模型的基础上,加入了负顾客和N策略。这是一个新的模型,改进了已有的相关结论。工作休假是指在休假期间,服务员不是完全停止服务,而是低速率继续为顾客服务。这既可减少顾客因为不耐烦排队离开后所造成的损失,也可提高经济效益。在文中的负顾客不接受服务,并只起一对一抵消队首正接受服务的顾客的作用,即服从RCH(Remove customer from head)策略。通过嵌入马尔可夫链方法,得到转移概率矩阵。并使用拟生灭过程及矩阵几何解方法得到队长的稳态分布:πkj=p(L=k,J=j),(k,j)∈Ω,进一步得出了系统队长的随机分解的结果:LN(z)=L0(z)Ld(z)。
文摘In this paper,we develop an M/M/c queueing system in a Markovian environment with waiting servers,balking and reneging,under both synchronous single and multiple working vacation policies.When the system is in operative phase j,j=1,K¯,customers are served one by one.Once the system is empty,the servers have to wait a random period of time before leaving,causing the system to move to vacation phase 0 at which new arrivals can be served at lower rate.Using the method of the probability generating functions,we establish the steady-state analysis of the system.Special cases of the queueing model are presented.Then,explicit expressions of the useful system characteristics are derived.In addition,a cost model is constructed to define the optimal values of service rates,simultaneously,to minimize the total expected cost per unit time via a quadratic fit search method.Numerical examples are provided to display the impact of different system characteristics.
基金supported by the National Natural Science Foundation of China under Grant No.71071133
文摘The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum number J of vacations,if the system remains empty after the end of a vacation.If there is at least one customer in the orbit at the end of a vacation,the server begins to serve the new arrivals or the arriving customers from the orbit.For this model,the authors focus on the steady-state analysis for the considered queueing system.Firstly,the authors obtain the generating functions of the number of customers in the orbit and in the system.Then,the authors obtain the closed-form expressions of some performance measures of the system and also give a stochastic decomposition result for the system size.Besides,the relationship between this discrete-time model and the corresponding continuous-time model is also investigated.Finally,some numerical results are provided.
基金Foundation item: Supported by the National Science Foundation of China(60874083) Supported by the 2011 National Statistical Science Development Funds(2011LY014) Supported by the 2012 Soft Science Devel- opment Funds of Science and Technology Committee of Henan Province(122400450090)
文摘In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and enter regular busy period with probability 1 p (if there are customers in the queue) or continue the vacation with probability p. For this model, we drive the analytic expression of the stationary queue length and demonstrate stochastic decomposition structures of the stationary queue length and waiting time, also we obtain the additional queue length and the additional delay of this model. The results we got agree with the corresponding results for working vacation model with or without vacation interruption if we set p = 0 or p = 1, respectively.
文摘This paper studies the operating characteristics of an M/G/1 queuing system with a randomized control policy and at most J vacations. After all the customers are served in the queue exhaustively, the server immediately takes at most J vacations repeatedly until at least N customers are waiting for service in the queue upon returning from a vacation. If the number of arrivals does not reach N by the end of the jth vacation, the server remains idle in the system until the number of arrivals in the queue reaches N. If the number of customers in the queue is exactly accumulated N since the server remains idle or returns from vacation, the server is activated for services with probability p and deactivated with probability (l-p). For such variant vacation model, other important system characteristics are derived, such as the expected number of customers, the expected length of the busy and idle period, and etc. Following the construction of the expected cost function per unit time, an efficient and fast procedure is developed for searching the joint optimum thresholds (N*,J*) that minimize the cost function. Some numerical examples are also presented.