In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairne...In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.展开更多
基金Supported by the National Natural Science Foundation of China(11371020,11301303,11571189,11601147,11671132)the Scientific Research Fund of Hunan Provincial Education Department,China(16C0953)
基金supported by National Natural Science Foundation of China (61172079, 61231008, 61201141, 61301176)111 Project (B08038)+1 种基金National S&T Major Project (2010ZX03003001)Shaanxi Province Science and Technology Research and Development Program (2011KJXX-40)
文摘In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.