期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
基于用户属性和评分的协同过滤推荐算法 被引量:39
1
作者 丁少衡 姬东鸿 王路路 《计算机工程与设计》 北大核心 2015年第2期487-491,497,共6页
为解决协同过滤推荐系统数据稀疏和冷启动带来的问题,提出一种相似度计算和评分预测算法。结合用户评分相似度、兴趣倾向相似度和置信度3方面,更充分地利用用户评分信息,使得用户相似度的计算更准确、区分度更高;使用sigmoid函数,实现... 为解决协同过滤推荐系统数据稀疏和冷启动带来的问题,提出一种相似度计算和评分预测算法。结合用户评分相似度、兴趣倾向相似度和置信度3方面,更充分地利用用户评分信息,使得用户相似度的计算更准确、区分度更高;使用sigmoid函数,实现冷启动状态下用户相似度计算时用户属性和用户评分信息的平滑过渡。在MovieLens真实数据集上进行实验,实验结果表明,该算法可有效提高评分预测的准确性,在一定程度上解决冷启动的问题。 展开更多
关键词 推荐系统 协同过滤 用户相似度 冷启动 SIGMOID函数
下载PDF
基于用户特征和项目属性的协同过滤推荐算法 被引量:28
2
作者 陈志敏 李志强 《计算机应用》 CSCD 北大核心 2011年第7期1748-1750,1755,共4页
在数据极度稀疏的环境下,仅仅依赖用户直接评分数据的传统协同过滤算法无法取得满意的推荐质量。提出基于用户特征和项目属性的协同过滤算法,在用户相似性计算过程中引入时间相关的兴趣度,使得最近邻的确定更加准确;预测评分时,通过衡... 在数据极度稀疏的环境下,仅仅依赖用户直接评分数据的传统协同过滤算法无法取得满意的推荐质量。提出基于用户特征和项目属性的协同过滤算法,在用户相似性计算过程中引入时间相关的兴趣度,使得最近邻的确定更加准确;预测评分时,通过衡量用户信任度来体现各邻居对目标用户最终推荐的贡献程度,并以用户对项目属性的偏好度代替评分数据对新项目进行推荐。基于MovieLens数据集进行的实验结果表明,改进后的算法有效解决了系统冷启动问题,明显提高了系统推荐的准确度。 展开更多
关键词 协同过滤 相似性计算 用户特征 冷启动
下载PDF
基于用户画像的高校图书馆个性化图书推荐研究 被引量:22
3
作者 王大阜 邓志文 +1 位作者 贾志勇 安计勇 《河南师范大学学报(自然科学版)》 CAS 北大核心 2022年第3期95-103,共9页
个性化推荐服务是高校智慧图书馆的建设重点,基于此,提出了图书推荐系统整体架构.首先从读者的属性、行为、兴趣等标签维度构建用户画像模型,其次考虑读者认知能力存在差异化的特点,将读者按照不同的身份类型划分,再结合基于协同过滤、... 个性化推荐服务是高校智慧图书馆的建设重点,基于此,提出了图书推荐系统整体架构.首先从读者的属性、行为、兴趣等标签维度构建用户画像模型,其次考虑读者认知能力存在差异化的特点,将读者按照不同的身份类型划分,再结合基于协同过滤、内容及属性相似度的混合推荐算法进行图书推荐.最后,通过Hadoop大数据平台向目标读者推荐TOP-N图书,实验结果表明,基于该架构模型的图书推荐系统的推荐准确度高,并且有效缓解了推荐系统的冷启动问题. 展开更多
关键词 推荐系统 智慧图书馆 用户画像 冷启动
下载PDF
基于用户画像的高校图书馆个性化资源推荐服务设计 被引量:21
4
作者 李宝 《新世纪图书馆》 CSSCI 2021年第4期68-75,共8页
用户画像作为大数据分析背景下个性化推荐服务的设计工具,为高校图书馆领域个性化阅读资源推荐服务提供解决思路。本研究在分析目前个性化推荐和用户画像研究的基础上,引入用户画像技术,从数据基础层、数据处理层、画像构建层、画像服... 用户画像作为大数据分析背景下个性化推荐服务的设计工具,为高校图书馆领域个性化阅读资源推荐服务提供解决思路。本研究在分析目前个性化推荐和用户画像研究的基础上,引入用户画像技术,从数据基础层、数据处理层、画像构建层、画像服务层设计探讨用户画像的构建流程,重点在用户画像构建和画像服务层面进行阐述,同时从用户基本属性、阅读状态、学习风格、阅读偏好四个维度构建用户多维画像模型,并提出基于冷启动和用户阅读学习过程画像的个性化推荐服务策略,以期为后疫情教育环境下高校图书馆开展个性化资源推荐服务和满足用户多维度阅读学习需求提供参考。 展开更多
关键词 用户画像 个性化资源推荐 阅读偏好 冷启动
下载PDF
采用信任网络增强的协同过滤算法 被引量:13
5
作者 李熠晨 陈莉 +1 位作者 石晨晨 兰小艳 《计算机应用研究》 CSCD 北大核心 2018年第1期116-120,共5页
由于数据稀疏性问题的普遍存在,不仅传统的协同过滤系统中使用单一相似度进行的推荐不具备较高的可信度,而且共同评分项过于稀疏也会导致其推荐性能大打折扣。针对以上问题,提出了一种采用信任网络增强的协同过滤算法(记为ECFATN)。通... 由于数据稀疏性问题的普遍存在,不仅传统的协同过滤系统中使用单一相似度进行的推荐不具备较高的可信度,而且共同评分项过于稀疏也会导致其推荐性能大打折扣。针对以上问题,提出了一种采用信任网络增强的协同过滤算法(记为ECFATN)。通过引入社会网络中常用的信任关系,即在原始的用户—项目评分矩阵上,通过信任计算建立用户间的信任关系,并使用传播规则传递信任关系,构建一个用户信任网络;最终使用用户间的信任度与相似度线性加权作为新的权重进行推荐。在真实的数据集上进行测试,实验结果表明,ECFATN算法不仅在一定程度上缓解了数据稀疏性问题并提高了推荐精度,而且由于信任关系的引入,对于用户冷启动问题也有较大的改善。 展开更多
关键词 数据稀疏性 协同过滤 相似度 信任网络 用户冷启动
下载PDF
新闻推荐系统中用户冷启动问题的研究 被引量:12
6
作者 杨秀梅 孙咏 +1 位作者 王美吉 李岩 《小型微型计算机系统》 CSCD 北大核心 2016年第3期479-482,共4页
提出利用用户上下文信息,解决新闻推荐系统中用户冷启动问题的方法.通过已有用户对于新闻的点击浏览记录,提取其在不同环境中的上下文信息,并利用兴趣分类记录构建决策树分类模型.新用户到达时,提取此用户在当前环境中所带有的上下文信... 提出利用用户上下文信息,解决新闻推荐系统中用户冷启动问题的方法.通过已有用户对于新闻的点击浏览记录,提取其在不同环境中的上下文信息,并利用兴趣分类记录构建决策树分类模型.新用户到达时,提取此用户在当前环境中所带有的上下文信息并与决策树模型进行匹配,以此预测新用户的新闻浏览兴趣,并将新闻主题与用户兴趣进行匹配,进而完成新闻推荐.实验结果表明,本文提出的基于用户上下文信息的方法能够有效缓解新闻推荐系统中用户冷启动问题,用户满意度明显提高,新闻推荐结果更为人性化. 展开更多
关键词 新闻推荐 用户冷启动 上下文信息 决策树
下载PDF
一种基于协作过滤的电影推荐方法 被引量:10
7
作者 陈天昊 帅建梅 朱明 《计算机工程》 CAS CSCD 2014年第1期55-58,62,共5页
在海量网络资源中,用户为了寻找喜欢的视频往往需要进行频繁操作,个性化推荐服务可以有效解决该问题,但当前推荐服务准确度较低,为此,提出一种基于协作过滤的改进推荐方法。根据相似用户群,即邻居集的点播记录确定当前用户的推荐电影子... 在海量网络资源中,用户为了寻找喜欢的视频往往需要进行频繁操作,个性化推荐服务可以有效解决该问题,但当前推荐服务准确度较低,为此,提出一种基于协作过滤的改进推荐方法。根据相似用户群,即邻居集的点播记录确定当前用户的推荐电影子集,挖掘当前用户的喜好,建立兴趣模型,并与推荐子集中的电影进行匹配,按匹配度高低进行推荐。对推荐电影子集进行分类,以适应家庭中多用户观看的情况。另外在系统运行初期采用相似影片的推荐以一定程度地缓解冷启动问题。实验结果表明,与现有协作过滤算法相比,改进推荐方法的推荐准确度有明显提高。 展开更多
关键词 协作过滤 个性化推荐 基于用户 兴趣模型 家庭用户 冷启动
下载PDF
基于三部图网络结构的知识推荐算法 被引量:10
8
作者 肖扬 王道平 杨岑 《计算机应用研究》 CSCD 北大核心 2015年第2期386-390,共5页
针对传统的知识推荐算法存在用户冷启动和冷门物品推荐的问题,提出了一种基于三部图网络结构的知识推荐算法。在计算相似度时引入网络结构中的度,综合考虑项目的度和权值及标签的度和权值对推荐算法的影响。实验结果表明,该算法提高了... 针对传统的知识推荐算法存在用户冷启动和冷门物品推荐的问题,提出了一种基于三部图网络结构的知识推荐算法。在计算相似度时引入网络结构中的度,综合考虑项目的度和权值及标签的度和权值对推荐算法的影响。实验结果表明,该算法提高了推荐的个性化和多样性,有效地解决了用户冷启动和冷门物品推荐的问题,改善了推荐效果。 展开更多
关键词 三部图 知识推荐 用户冷启动 冷门物品
下载PDF
基于融合相似度和层次聚类的冷启动推荐算法 被引量:9
9
作者 韩胜宝 伊华伟 +2 位作者 李晓会 李波 景荣 《小型微型计算机系统》 CSCD 北大核心 2022年第5期985-991,共7页
为了缓解协同过滤推荐算法中的用户冷启动问题,提出一种基于融合相似度和层次聚类的冷启动推荐算法.首先,基于用户的人口统计学信息、用户对项目的评分信息和项目种类信息,提出一种融合相似度计算方法;其次,基于用户的人口统计学信息,... 为了缓解协同过滤推荐算法中的用户冷启动问题,提出一种基于融合相似度和层次聚类的冷启动推荐算法.首先,基于用户的人口统计学信息、用户对项目的评分信息和项目种类信息,提出一种融合相似度计算方法;其次,基于用户的人口统计学信息,利用层次聚类确定冷启动用户的初始近邻用户集;最后,基于初始近邻用户集,利用融合相似度为目标用户进行推荐.基于MovieLens公共数据集,将本文提出的算法和其他推荐算法进行了实验对比分析,结果显示所提算法能够有效地缓解用户的冷启动问题,提高算法的推荐质量. 展开更多
关键词 协同过滤 用户冷启动 层次聚类 融合相似度 人口统计学
下载PDF
基于信任环的用户冷启动推荐 被引量:6
10
作者 杨圩生 罗爱民 张萌萌 《计算机科学》 CSCD 北大核心 2013年第11A期363-365,397,共4页
近年来,为了解决推荐系统的用户冷启动问题,信任推荐技术得到了长足发展。然而,传统的信任推荐技术在处理信任关系上比较粗糙。基于信任环的推荐思想严格控制了信任度对推荐结果的影响。实验结果表明,该方法能有效解决用户冷启动问题,... 近年来,为了解决推荐系统的用户冷启动问题,信任推荐技术得到了长足发展。然而,传统的信任推荐技术在处理信任关系上比较粗糙。基于信任环的推荐思想严格控制了信任度对推荐结果的影响。实验结果表明,该方法能有效解决用户冷启动问题,并提高推荐的准确率。 展开更多
关键词 信任环 用户冷启动 推荐
下载PDF
基于用户偏好的信任网络随机游走推荐模型 被引量:4
11
作者 张萌 南志红 《计算机应用》 CSCD 北大核心 2016年第12期3363-3368,共6页
为了提高推荐算法评分预测的准确度,解决冷启动用户推荐问题,在TrustWalker模型基础上提出一种基于用户偏好的随机游走模型——PtTrustWalker。首先,利用矩阵分解法对社会网络中的用户、项目相似度进行计算;其次,将项目进行聚类,通过用... 为了提高推荐算法评分预测的准确度,解决冷启动用户推荐问题,在TrustWalker模型基础上提出一种基于用户偏好的随机游走模型——PtTrustWalker。首先,利用矩阵分解法对社会网络中的用户、项目相似度进行计算;其次,将项目进行聚类,通过用户评分计算用户对项目类的偏好和不同项目类下的用户相似度;最后,利用权威度和用户偏好将信任细化为不同类别下用户的信任,并在游走过程中利用信任用户最高偏好类中与目标物品相似的项目评分进行评分预测。该模型降低了噪声数据的影响,从而提高了推荐结果的稳定性。实验结果表明,PtTrustWalker模型在推荐质量和推荐速度方面相比现有随机游走模型有所提高。 展开更多
关键词 基于信任网络推荐 用户偏好 随机游走 推荐系统 冷启动
下载PDF
面向冷启动用户的元学习与图转移学习序列推荐
12
作者 李璐 张志军 +2 位作者 范钰敏 王星 袁卫华 《山东大学学报(工学版)》 CAS CSCD 北大核心 2024年第2期69-79,共11页
为解决推荐系统用户冷启动问题,提出面向冷启动用户的元学习与图转移学习序列推荐(sequential recommendation for cold-start users with meta graph transitional learning, MetaGTL)。MetaGTL在不使用其他辅助信息的前提下,采用图神... 为解决推荐系统用户冷启动问题,提出面向冷启动用户的元学习与图转移学习序列推荐(sequential recommendation for cold-start users with meta graph transitional learning, MetaGTL)。MetaGTL在不使用其他辅助信息的前提下,采用图神经网络(graph neural network, GNN)建模序列间物品高阶关系生成用户物品嵌入;将交互序列构造为物品对集合,使用序列编码模块捕捉物品间的转移关系,动态建模用户兴趣;采用注意力机制,生成准确的用户特征;采用基于梯度的元学习方法训练模型,生成初始化模型;对模型的工作性能和结果进行详细分析,结合基线模型进行对比评价。试验结果表明,基于元学习与图转移学习的MetaGTL在缺少辅助信息的用户冷启动任务中具有更高的预测精度。 展开更多
关键词 推荐系统 序列推荐 用户冷启动 图神经网络 元学习 深度学习
原文传递
结合用户属性聚类的协同过滤推荐算法 被引量:3
13
作者 林康 杨云 +1 位作者 秦怡 闵玉涓 《计算机与现代化》 2016年第7期28-32,共5页
协同过滤算法利用大量数据,通过研究用户的喜好可以为用户推荐其感兴趣的项目,在电子商务得到了广泛应用。然而,此类算法在面临扩展性、数据稀疏性和冷启动等问题时,出现推荐准确度下降和推荐效率偏低的问题。针对这些问题,本文引入用... 协同过滤算法利用大量数据,通过研究用户的喜好可以为用户推荐其感兴趣的项目,在电子商务得到了广泛应用。然而,此类算法在面临扩展性、数据稀疏性和冷启动等问题时,出现推荐准确度下降和推荐效率偏低的问题。针对这些问题,本文引入用户属性相似度的概念,使用K-means聚类算法将用户划分到恰当用户簇,预测用户对项目的评分。然后,通过混合加权的方法,将基于用户属性的K均值聚类的推荐算法与基于项目的协同过滤算法相融合,提出综合用户属性的协同过滤算法。通过在Movie Lens数据集上进行实验,结果表明本文所提出的算法具有可扩展性,同时在一定程度上缓解了冷启动问题,提高了推荐算法的预测准确度。 展开更多
关键词 协同过滤 K-MEANS聚类 用户属性 冷启动
下载PDF
一种基于网站聚合和语义知识的电影推荐方法 被引量:3
14
作者 周文乐 朱明 陈天昊 《计算机工程》 CAS CSCD 2014年第8期277-281,共5页
针对传统个性化推荐方法中存在的稀疏性、冷启动、过度专业化且准确率低等问题,提出一种基于网站聚合和知识的电影推荐方法。利用网络爬虫聚合源网站对某部电影的相关推荐,得到待推荐电影集,使用电影知识构建基于本体论的电影模型,并在... 针对传统个性化推荐方法中存在的稀疏性、冷启动、过度专业化且准确率低等问题,提出一种基于网站聚合和知识的电影推荐方法。利用网络爬虫聚合源网站对某部电影的相关推荐,得到待推荐电影集,使用电影知识构建基于本体论的电影模型,并在该模型的基础上给出一种学习用户偏好权重的算法,采用SimRank算法和加权平均值计算电影相似度,根据相似度高低向用户进行推荐。实验结果证明,该方法的推荐准确度在非实时推荐场景下较现有方法提高10%以上,且实时推荐的推荐质量有明显提高,在一定程度上解决了稀疏性、冷启动及过度专业化等问题。 展开更多
关键词 个性化推荐 网络爬虫 网站聚合 本体论 用户偏好 冷启动
下载PDF
融合项目属性偏好的矩阵分解推荐模型 被引量:2
15
作者 韩立锋 陈莉 史晓龙 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期147-159,共13页
为了解决传统协同过滤算法针对数据稀疏,特别是冷启动等一系列问题时,无法准确地计算出用户与用户、物品与物品之间的相似度,进而无法精准地为用户推荐相应物品的难题,结合基于近邻的协同过滤算法及基于模型协同过滤算法的优势,提出了... 为了解决传统协同过滤算法针对数据稀疏,特别是冷启动等一系列问题时,无法准确地计算出用户与用户、物品与物品之间的相似度,进而无法精准地为用户推荐相应物品的难题,结合基于近邻的协同过滤算法及基于模型协同过滤算法的优势,提出了一种基于矩阵分解的推荐模型。该模型使用基于模型的协同过滤,以矩阵分解为基础,同时融入其他辅助信息,以期优化矩阵分解的效果,从而进行更精准的评分预测。基于传统矩阵分解算法,在已有的推荐模型中,首先基于用户属性与项目属性信息进行相似度计算,构建评分矩阵,进行用户的初始评分预测;然后融合用户对项目属性的喜好构建用户兴趣矩阵,同时以用户属性信息、项目属性信息作为辅助,融入到新的矩阵分解模型中,进行冷启动用户的评分预测。与传统的个性化推荐模型相比,新模型有着更好的推荐准确性。通过仿真实验,也证实了这个推荐模型对于冷启动问题有一定程度的缓解,准确性也有所提升。同时,在模型可扩展性等方面,也取得了较好的效果。 展开更多
关键词 用户冷启动 矩阵分解 用户属性 项目属性 用户偏好
下载PDF
融入用户和项目特征的概率矩阵分解推荐算法 被引量:2
16
作者 薛建宇 刘献忠 《计算机应用》 CSCD 北大核心 2021年第S01期101-107,共7页
与传统的协同过滤推荐算法相比,概率矩阵分解(PMF)模型在大型、稀疏的数据集上表现良好,但其仅利用了用户对项目的评分信息,没有充分考虑用户和项目的特征,因此在推荐准确度等方面仍具有很大的提升空间。基于概率矩阵分解模型,融合用户... 与传统的协同过滤推荐算法相比,概率矩阵分解(PMF)模型在大型、稀疏的数据集上表现良好,但其仅利用了用户对项目的评分信息,没有充分考虑用户和项目的特征,因此在推荐准确度等方面仍具有很大的提升空间。基于概率矩阵分解模型,融合用户属性特征、用户偏好特征和项目标签特征,提出一种新的推荐算法UFIF-PMF。首先,根据用户属性信息计算用户属性相似度,利用项目标签信息和用户评分信息计算用户偏好相似度,并通过加权构建用户相似度矩阵;然后,构建基于项目标签信息的项目相似度矩阵;接着,将用户相似度矩阵和项目相似度矩阵融入到概率矩阵分解模型中;最后,在电影公开数据集Movielens上进行模型训练和对比实验。实验结果表明,在训练集比例为90%、隐性特征维度为10的情况下,与PMF、基于用户偏好的概率矩阵分解推荐算法(USPMF)和融合物品相似度的概率矩阵分解推荐算法(ISPMF)相比,UFIF-PMF算法的均方根误差(RMSE)分别下降6.27%、3.65%和3.49%,平均绝对误差(MAE)分别下降8.46%、4.8%和4.67%,同时有效缓解了推荐系统的冷启动和数据稀疏问题,有较强的可扩展性。 展开更多
关键词 概率矩阵分解 用户属性 用户偏好 项目标签 冷启动
下载PDF
基于综合相似度和社交标签的推荐算法 被引量:2
17
作者 时念云 张芸 马力 《计算机系统应用》 2017年第10期178-183,共6页
针对传统个性化推荐方法所面临的冷启动、数据稀疏等问题,本论文结合了项目组的前期研究,在综合考虑用户特征和用户信任度的基础上,引入了用户兴趣,形成综合相似度.针对目前推荐系统中评分数据较少的问题,论文结合了社交标签,丰富了推... 针对传统个性化推荐方法所面临的冷启动、数据稀疏等问题,本论文结合了项目组的前期研究,在综合考虑用户特征和用户信任度的基础上,引入了用户兴趣,形成综合相似度.针对目前推荐系统中评分数据较少的问题,论文结合了社交标签,丰富了推荐数据.首先利用综合相似度,找到用户的相似近邻,并将相似近邻所标注的标签形成一个标签集.其次利用基于标签的推荐算法,产生最终的推荐列表.实验结果表明,该算法能够有效提高推荐的准确率和召回率. 展开更多
关键词 用户特征 信任度 冷启动 用户兴趣 社交标签
下载PDF
嵌入用户评分偏好置信度的社会化推荐算法 被引量:2
18
作者 郝润芳 张光明 程永强 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第11期138-146,共9页
提出一种嵌入用户评分偏好置信度的社会化推荐算法Conf-SMF,将用户评分偏好与拓展后的社会信任关系结合起来,有效提高了推荐质量。在FilmTrust、CiaoDVD和Epinions 3个公开数据集上进行实验,实验结果表明:提出的算法相比TrustMF、CUNE-M... 提出一种嵌入用户评分偏好置信度的社会化推荐算法Conf-SMF,将用户评分偏好与拓展后的社会信任关系结合起来,有效提高了推荐质量。在FilmTrust、CiaoDVD和Epinions 3个公开数据集上进行实验,实验结果表明:提出的算法相比TrustMF、CUNE-MF推荐算法,在3个数据集上预测误差最大分别降低5.79%、4.58%;14.13%、12.84%;10%、8.77%。另外,所提出的算法对“冷启动”用户与“活跃”用户的预测评分性能也有所提高。 展开更多
关键词 用户评分置信度 社会隐语义朋友 社会语料库 冷启动 预测评分
下载PDF
利用交叉推荐模型解决用户冷启动问题 被引量:1
19
作者 朱坤广 杨达 +1 位作者 崔强 郝春亮 《计算机应用与软件》 CSCD 2016年第5期66-71,76,共7页
用户冷启动是推荐系统的一个重要问题。传统的推荐系统使用迁移学习的方法来解决这个问题,即利用一个领域的评分信息或者标签预测另外一个领域的用户和物品评分。上述迁移学习模型通常假设两个领域没有重叠的用户和物品,与上述假设不同... 用户冷启动是推荐系统的一个重要问题。传统的推荐系统使用迁移学习的方法来解决这个问题,即利用一个领域的评分信息或者标签预测另外一个领域的用户和物品评分。上述迁移学习模型通常假设两个领域没有重叠的用户和物品,与上述假设不同,很多情况下系统可以获取同一用户在不同领域的数据。针对这种数据,提出一种新的推荐系统冷启动模型—cross SVD&GBDT(CSGT),通过有效利用重叠用户的信息来解决用户冷启动问题。具体地,首先提出新模型获取用户和物品的特征,然后利用GBDT模型进行训练。实验数据表明,在豆瓣数据集中corss SVD&GBDT可以得到比传统方法性能更高、鲁棒性更强的实验结果。 展开更多
关键词 推荐系统 迁移学习 用户冷启动 交叉推荐
下载PDF
高校新读者图书个性化推荐服务研究
20
作者 王圣镔 《农业图书情报》 2019年第5期50-60,共11页
[目的/意义]针对阻碍高校智慧图书馆对新读者进行图书个性化推荐的用户冷启动问题,提出一种面向新读者的高校图书馆个性化推荐方法,为智慧型高校图书馆开展图书个性化推荐服务、提高新读者借阅率提供切实可行的方案。[方法/过程]以北华... [目的/意义]针对阻碍高校智慧图书馆对新读者进行图书个性化推荐的用户冷启动问题,提出一种面向新读者的高校图书馆个性化推荐方法,为智慧型高校图书馆开展图书个性化推荐服务、提高新读者借阅率提供切实可行的方案。[方法/过程]以北华大学图书馆借阅流通大数据进行数据挖掘,得出属性相似的新读者和已有读者具有相似借阅偏好的结论。然后,通过奇异值分解解决数据稀疏问题,采用基于欧氏距离的蚁群算法对新读者与已有读者聚类,搭建了新读者和已有读者之间关系的桥梁。最后将已有读者借阅的图书采取Top-N算法对新读者推荐。[结果/结论]以2017级读者为实验对象,选取了3个学院的44名读者,用所提出的算法进行了实验检验。实验结果表明新算法推荐效果显著,操作简单可行,为后续个性化推荐工作奠定了基础。 展开更多
关键词 新读者 个性化推荐 用户冷启动 数据稀疏 聚类
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部