Wireless sensor networks (WSNs) are considered the backbone ofthe Internet of Things (IoT), which enables sensor nodes (SNs) to achieveapplications similarly to human intelligence. However, integrating a WSNwith the I...Wireless sensor networks (WSNs) are considered the backbone ofthe Internet of Things (IoT), which enables sensor nodes (SNs) to achieveapplications similarly to human intelligence. However, integrating a WSNwith the IoT is challenging and causes issues that require careful exploration.Prolonging the lifetime of a network through appropriately utilising energyconsumption is among the essential challenges due to the limited resourcesof SNs. Thus, recent research has examined mobile sinks (MSs), which havebeen introduced to improve the overall efficiency of WSNs. MSs bear theburden of data collection instead of consuming energy at the routeing bySNs. In a network, some areas generate more data through SNs that containfrequent, urgent messages. These messages carry sensitive data that must bedelivered immediately to user applications. Collecting such messages via MSs,especially on a large scale, increases delays, which are not tolerable in some realapplications. This issue has not been studied much. Thus, the present studyutilises the advantages of the priority parameter to concentrate on these areasand proposes a new model named ‘energy efficient path planning of MS-basedarea priority’ (EEPP-BAP). This method involves non-urgent and urgentmessages. It is comprised of four procedures. Initially, after SNs are distributedrandomly in a wide monitoring field, the monitoring field is partitionedinto equal zones according to priority, either differently or equally. Next isclustering based on the cluster head (CH) selected to perform the particleswarm optimisation algorithm (PSO). Then, the MS moves first to the zoneswith higher priority and less distance to perform the brain storm optimisationalgorithm. Finally, for urgent messages from the other zones at which theMS continues, the proposed approach establishes a routeing technique usingmulti-hop communication based on the MS position and using PSO. The proposed solution is aimed at delivering urgent messages to MSs free of latencyand with minimal packet loss. The sim展开更多
文摘Wireless sensor networks (WSNs) are considered the backbone ofthe Internet of Things (IoT), which enables sensor nodes (SNs) to achieveapplications similarly to human intelligence. However, integrating a WSNwith the IoT is challenging and causes issues that require careful exploration.Prolonging the lifetime of a network through appropriately utilising energyconsumption is among the essential challenges due to the limited resourcesof SNs. Thus, recent research has examined mobile sinks (MSs), which havebeen introduced to improve the overall efficiency of WSNs. MSs bear theburden of data collection instead of consuming energy at the routeing bySNs. In a network, some areas generate more data through SNs that containfrequent, urgent messages. These messages carry sensitive data that must bedelivered immediately to user applications. Collecting such messages via MSs,especially on a large scale, increases delays, which are not tolerable in some realapplications. This issue has not been studied much. Thus, the present studyutilises the advantages of the priority parameter to concentrate on these areasand proposes a new model named ‘energy efficient path planning of MS-basedarea priority’ (EEPP-BAP). This method involves non-urgent and urgentmessages. It is comprised of four procedures. Initially, after SNs are distributedrandomly in a wide monitoring field, the monitoring field is partitionedinto equal zones according to priority, either differently or equally. Next isclustering based on the cluster head (CH) selected to perform the particleswarm optimisation algorithm (PSO). Then, the MS moves first to the zoneswith higher priority and less distance to perform the brain storm optimisationalgorithm. Finally, for urgent messages from the other zones at which theMS continues, the proposed approach establishes a routeing technique usingmulti-hop communication based on the MS position and using PSO. The proposed solution is aimed at delivering urgent messages to MSs free of latencyand with minimal packet loss. The sim