The thermolysis of urea-water solution and its product, HNCO hydrolysis is investigated in a dual-reactor system. For the thermal decomposition below about 1073 K, the main products are ammonia (NH3) and isocyanic aci...The thermolysis of urea-water solution and its product, HNCO hydrolysis is investigated in a dual-reactor system. For the thermal decomposition below about 1073 K, the main products are ammonia (NH3) and isocyanic acid (HNCO) whereas at higher temperatures the oxidation processes take effect and the products include a low concentration of nitric oxide (NO) and nitrous oxide (N2O). The gas HNCO is quite stable and a high yield of HNCO is observed. The ratio of NH3 to HNCO increases from approximately 1.2 to 1.7 with the temperature. The chemical analysis shows that H radical is in favor of HNCO hydrolysis by instigating the reaction HNCO+H·→·NH2+CO and high temperature has positive effect on H radical. The hydrolysis of HNCO over an alumina catalyst made using a sol-gel process (designated as γ-Al2O3) is investigated. The conversion of HNCO is high even at the high space velocities (6×105 h-1) and low temperatures (393–673 K) in the tests with catalysts, which enhances HNCO hydrolysis and raises the ratio of NH3 to HNCO to approximately 100. The pure γ-Al2O3 shows a better catalytic performance than CuO/γ-Al2O3. The addition of CuO not only reduces the surface area but also decreases the Lewis acid sites which are recognized to have a positive effect on the catalytic activity. The apparent activation energy of the hydrolysis reaction amounts to about 25 kJ/mol in 393–473 K while 13 kJ/mol over 473 K. The overall hydrolysis reaction rate on catalysts is mainly determined by external and internal mass-transfer limitations.展开更多
为探究影响柴油机排气管尿素水溶液(urea water solution,UWS)雾化效果的因素,搭建了UWS喷射试验台架,通过激光粒度仪测得尿素液滴粒径分布,并运用Rosin-Rammler函数对试验获得的累积粒径分布进行非线性拟合,利用计算流体力学(computati...为探究影响柴油机排气管尿素水溶液(urea water solution,UWS)雾化效果的因素,搭建了UWS喷射试验台架,通过激光粒度仪测得尿素液滴粒径分布,并运用Rosin-Rammler函数对试验获得的累积粒径分布进行非线性拟合,利用计算流体力学(computational fluid dynamics,CFD)软件对柴油机负荷工况、UWS喷射温度和排气管壁温3种不同因素对UWS喷雾雾化特征、NH3浓度分布及液膜形成的影响进行仿真计算。结果表明:低负荷工况下的排气流量和温度低,UWS喷入量少,尿素液滴分解NH3的速率较低,80 ms时刻NH3主要分布在排气管中游;中高负荷工况,排气温度高、UWS喷入量多,有利于尿素蒸发热解生成NH3,该时刻NH3浓度区域偏离轴线,贴近排气管上表面;喷雾液滴粒径随UWS喷射温度的升高而减小,范围在1~12μm,空间内NH3浓度小幅增加,液膜沉积率随喷射温度升高显著降低;排气管壁温对UWS喷雾液滴粒径和蒸发热解速率影响较大,壁温升高加快了液滴粒径减小的速度,当壁面温度为473K时,150ms时刻下液滴粒径主要集中在30μm以下,附着壁面的液膜厚度明显减小直至消失,尿素结晶问题得以改善。展开更多
为解决发动机排气管在排气温度较低时出现的尿素结晶问题,该研究从改进尿素水溶液(Urea Water Solution,UWS)雾化效果角度进行分析,搭建UWS喷射雾化试验台架,利用智能温控仪提供恒温壁面,利用高速摄像机记录UWS碰撞不同温度壁面的过程,...为解决发动机排气管在排气温度较低时出现的尿素结晶问题,该研究从改进尿素水溶液(Urea Water Solution,UWS)雾化效果角度进行分析,搭建UWS喷射雾化试验台架,利用智能温控仪提供恒温壁面,利用高速摄像机记录UWS碰撞不同温度壁面的过程,采用激光粒度仪探究UWS以30°入射角分别碰撞常温(20℃)、100、150和200℃温度壁面后,近壁面处液滴粒径随时间的变化趋势。结果表明:不同壁面温度条件下,液滴的索特平均直径(Sauter Mean Diameter,SMD)大小呈‘M’形分布,测试空间内的SMD整体变化趋势一致,随着壁面温度的升高,SMD逐渐减小。UWS与不同温度壁面碰撞的初期,常温(20℃)壁面的主射区液滴粒径在120~180μm,反射区液滴粒径在100~120μm;壁面温度为100℃时,主射区液滴粒径在120~140μm,反射区液滴粒径在90~110μm;壁面温度为150℃时,主射区液滴粒径在100~120μm,反射区液滴粒径在80~100μm,壁面温度为200℃时,主射区液滴粒径集中在50~70μm,反射区液滴粒径在30~50μm,随着时间的延长,液滴粒径逐渐减小,最后保持稳定。随着壁面温度的升高,测试空间内液滴粒径随时间延长而减小的速度增加,雾化效果更好,壁面残留物经历了由尿素水溶液到尿素晶体、再到熔融态尿素晶体、最后为少量白色粉尘(氰酸聚合物)4个阶段。UWS形成的壁面液膜随着壁面温度的升高逐渐减小,当壁面温度较高时则不会有液膜形成。研究结果可为解决排气管内尿素结晶问题提供理论依据。展开更多
基金Project supported by the National High-Tech Research and Development Program (863) of China (No. 2009AA05Z301)the National Basic Research Program (973) of China (No. 2006CB-200303)
文摘The thermolysis of urea-water solution and its product, HNCO hydrolysis is investigated in a dual-reactor system. For the thermal decomposition below about 1073 K, the main products are ammonia (NH3) and isocyanic acid (HNCO) whereas at higher temperatures the oxidation processes take effect and the products include a low concentration of nitric oxide (NO) and nitrous oxide (N2O). The gas HNCO is quite stable and a high yield of HNCO is observed. The ratio of NH3 to HNCO increases from approximately 1.2 to 1.7 with the temperature. The chemical analysis shows that H radical is in favor of HNCO hydrolysis by instigating the reaction HNCO+H·→·NH2+CO and high temperature has positive effect on H radical. The hydrolysis of HNCO over an alumina catalyst made using a sol-gel process (designated as γ-Al2O3) is investigated. The conversion of HNCO is high even at the high space velocities (6×105 h-1) and low temperatures (393–673 K) in the tests with catalysts, which enhances HNCO hydrolysis and raises the ratio of NH3 to HNCO to approximately 100. The pure γ-Al2O3 shows a better catalytic performance than CuO/γ-Al2O3. The addition of CuO not only reduces the surface area but also decreases the Lewis acid sites which are recognized to have a positive effect on the catalytic activity. The apparent activation energy of the hydrolysis reaction amounts to about 25 kJ/mol in 393–473 K while 13 kJ/mol over 473 K. The overall hydrolysis reaction rate on catalysts is mainly determined by external and internal mass-transfer limitations.
文摘为解决发动机排气管在排气温度较低时出现的尿素结晶问题,该研究从改进尿素水溶液(Urea Water Solution,UWS)雾化效果角度进行分析,搭建UWS喷射雾化试验台架,利用智能温控仪提供恒温壁面,利用高速摄像机记录UWS碰撞不同温度壁面的过程,采用激光粒度仪探究UWS以30°入射角分别碰撞常温(20℃)、100、150和200℃温度壁面后,近壁面处液滴粒径随时间的变化趋势。结果表明:不同壁面温度条件下,液滴的索特平均直径(Sauter Mean Diameter,SMD)大小呈‘M’形分布,测试空间内的SMD整体变化趋势一致,随着壁面温度的升高,SMD逐渐减小。UWS与不同温度壁面碰撞的初期,常温(20℃)壁面的主射区液滴粒径在120~180μm,反射区液滴粒径在100~120μm;壁面温度为100℃时,主射区液滴粒径在120~140μm,反射区液滴粒径在90~110μm;壁面温度为150℃时,主射区液滴粒径在100~120μm,反射区液滴粒径在80~100μm,壁面温度为200℃时,主射区液滴粒径集中在50~70μm,反射区液滴粒径在30~50μm,随着时间的延长,液滴粒径逐渐减小,最后保持稳定。随着壁面温度的升高,测试空间内液滴粒径随时间延长而减小的速度增加,雾化效果更好,壁面残留物经历了由尿素水溶液到尿素晶体、再到熔融态尿素晶体、最后为少量白色粉尘(氰酸聚合物)4个阶段。UWS形成的壁面液膜随着壁面温度的升高逐渐减小,当壁面温度较高时则不会有液膜形成。研究结果可为解决排气管内尿素结晶问题提供理论依据。