In this paper, a new method for making v/uv decision is developed which uses a multi-feature v/uv classification algorithm based on the analysis of cepstral peak, zero crossing rate, and autocorrelation function (ACF)...In this paper, a new method for making v/uv decision is developed which uses a multi-feature v/uv classification algorithm based on the analysis of cepstral peak, zero crossing rate, and autocorrelation function (ACF) peak of short-time segments of the speech signal by using some clustering methods. This v/uv classifier achieved excellent results for identification of voiced and unvoiced segments of speech.展开更多
文摘In this paper, a new method for making v/uv decision is developed which uses a multi-feature v/uv classification algorithm based on the analysis of cepstral peak, zero crossing rate, and autocorrelation function (ACF) peak of short-time segments of the speech signal by using some clustering methods. This v/uv classifier achieved excellent results for identification of voiced and unvoiced segments of speech.