In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver- sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec- tively. A new multi-layer mo...In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver- sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec- tively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM) is established to search corresponding donor elements in the present moving- embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD) model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum- Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are val- idated by comparing the calculated results with available experimental data. Then, unsteady aero- dynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60°) and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these investigation results could provide a展开更多
In this study,the unsteady flow and heat transfer characteristics of a laminar slot jet at low Reynolds numbers impinging on an isothermal plate surface in a two-dimensional confined space are numerically investigated...In this study,the unsteady flow and heat transfer characteristics of a laminar slot jet at low Reynolds numbers impinging on an isothermal plate surface in a two-dimensional confined space are numerically investigated.The investigations are performed at Reynolds numbers of 120,150 and 200 based on the nozzle width and mean inlet velocity of the jet.Results show that the Reynolds numbers of 120,150 and 200 correspond to different flow features,namely,a steady flow,an intermittent flapping motion of jet column and a continuous sinusoidal flapping state,respectively.Based on some time snapshots of the flow field,the dynamic characteristics and driving mechanism of the intermittent flapping motion of the jet column and the continuous sinusoidal flapping state are explained.When the jet flaps at the Reynolds number 150 and 200,there are other Nusselt number peaks outside the stagnation zone,which are related to the interference between the vortices shedding on both sides of the jet and the boundary layers of the plate surface.Furthermore,the dynamic mode decomposition is implemented to accurately extract flow modes with characteristic frequencies.For a Reynolds number of 150,there is a flapping mode,which describes the lateral flapping motion of the jet column.When the Reynolds number is 200,there are multiple modes related to the flapping motion of the jet,as well as a low-frequency mode,which reflects the periodic changes of the boundary contour and position of the recirculation zone.展开更多
The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-...The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-tion(DMD).The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system.Thereafter,DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching.First-order zero frequency mode is selected to accelerate the pseudo-time marching of unsteady adjoint equations in every real-time step.Through flow past a stationary circular cylinder and an unsteady aerodynamic shape optimization example,the efficiency of solving unsteady adjoint equations is significantly improved.Re-sults show that one hundred adjoint vectors contains enough information about the pseudo-time dynamics,and the adjoint dominant mode can be precisely predicted only by five snapshots produced from the adjoint vectors,which indicates DMD analysis for pseudo-time marching of unsteady adjoint equations is efficient.展开更多
A two-dimensional model is built to describe the translation and the rotation of the hovering flapping movement. The equations of motion are derived for insect's flapping movement, and the model is implemented by the...A two-dimensional model is built to describe the translation and the rotation of the hovering flapping movement. The equations of motion are derived for insect's flapping movement, and the model is implemented by the computational fluid dynamics(CFD) software FLUENT and it?s user defined function(UDF). It is shown that the lift coefficient changes slowly in the intermediate stage, there are two areas in which the lift coefficient changes dramatically, and the drag coefficient behaves quite differently when flapping up and down. The vortex distribution, the pressure distribution, and the velocity vector distribution in the advanced mode at different times follow quite various rules.展开更多
Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable ...Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable solute clearance with increasing time and the dialysis time with increasing blood flux are simulated in detail,and then one optimal blood cycle mode is acquired. The results are very important to improve the clinical dialysis efficiency of artificial kidney.展开更多
基金supported by the National Natural Science Foundation of China(No.11272150)
文摘In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver- sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec- tively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM) is established to search corresponding donor elements in the present moving- embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD) model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum- Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are val- idated by comparing the calculated results with available experimental data. Then, unsteady aero- dynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60°) and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these investigation results could provide a
基金the support for the research from the National Key R&D Program of China(2018YFB0604404)。
文摘In this study,the unsteady flow and heat transfer characteristics of a laminar slot jet at low Reynolds numbers impinging on an isothermal plate surface in a two-dimensional confined space are numerically investigated.The investigations are performed at Reynolds numbers of 120,150 and 200 based on the nozzle width and mean inlet velocity of the jet.Results show that the Reynolds numbers of 120,150 and 200 correspond to different flow features,namely,a steady flow,an intermittent flapping motion of jet column and a continuous sinusoidal flapping state,respectively.Based on some time snapshots of the flow field,the dynamic characteristics and driving mechanism of the intermittent flapping motion of the jet column and the continuous sinusoidal flapping state are explained.When the jet flaps at the Reynolds number 150 and 200,there are other Nusselt number peaks outside the stagnation zone,which are related to the interference between the vortices shedding on both sides of the jet and the boundary layers of the plate surface.Furthermore,the dynamic mode decomposition is implemented to accurately extract flow modes with characteristic frequencies.For a Reynolds number of 150,there is a flapping mode,which describes the lateral flapping motion of the jet column.When the Reynolds number is 200,there are multiple modes related to the flapping motion of the jet,as well as a low-frequency mode,which reflects the periodic changes of the boundary contour and position of the recirculation zone.
基金the Natural Science Foundation of Jiangsu Province(Grants No.BK20230202)Basic Science(Natural Science)Re-search Project of Colleges and Universities in Jiangsu Province(Grant No.22KJB130005)+3 种基金Changzhou Science and Technology Project(Grant No.CJ20220242)for financial supportJiaqing Kou would like to thank the support of the Alexander von Humboldt Foundation(Ref 3.5-CHN-1227287-HFST-P)Wenkai Yang would like to thank the support of the National Natural Science Foundation of China(Grant No.52205335)supported by Changzhou Sci&Tech Pro-gram(Grant No.CM20223013).
文摘The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-tion(DMD).The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system.Thereafter,DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching.First-order zero frequency mode is selected to accelerate the pseudo-time marching of unsteady adjoint equations in every real-time step.Through flow past a stationary circular cylinder and an unsteady aerodynamic shape optimization example,the efficiency of solving unsteady adjoint equations is significantly improved.Re-sults show that one hundred adjoint vectors contains enough information about the pseudo-time dynamics,and the adjoint dominant mode can be precisely predicted only by five snapshots produced from the adjoint vectors,which indicates DMD analysis for pseudo-time marching of unsteady adjoint equations is efficient.
基金Project supported by the Changjiang Youth Scholars Program of China(Grant Nos.51373033,11172064)the National Natural Science Foundation of China(Grant Nos.51773037,61771123)
文摘A two-dimensional model is built to describe the translation and the rotation of the hovering flapping movement. The equations of motion are derived for insect's flapping movement, and the model is implemented by the computational fluid dynamics(CFD) software FLUENT and it?s user defined function(UDF). It is shown that the lift coefficient changes slowly in the intermediate stage, there are two areas in which the lift coefficient changes dramatically, and the drag coefficient behaves quite differently when flapping up and down. The vortex distribution, the pressure distribution, and the velocity vector distribution in the advanced mode at different times follow quite various rules.
基金The project supported by the National Natural Science Foundation of China (5016016) and Natural Science Foundation of AnhuiProvince(03043717)
文摘Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable solute clearance with increasing time and the dialysis time with increasing blood flux are simulated in detail,and then one optimal blood cycle mode is acquired. The results are very important to improve the clinical dialysis efficiency of artificial kidney.