Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring sy...Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring system for detecting and classifying the type of transmission line fault occurred in a power grid.In contradiction to conventional methods,transmission line fault occurred at any locality within power grid can be identified and classified using measurements from phasor measurement unit(PMU)at one of the generator buses.This minimal requirement makes the proposed methodology ideal for providing backup protection.Spectral analysis of equivalent power factor angle(EPFA)variation has been adopted for detecting the occurrence of fault that occurred anywhere in the grid.Classification of the type of fault occurred is achieved from the spectral coefficients with the aid of artificial intelligence.The proposed system can considerably assist system protection center(SPC)in fault localization and to restore the line at the earliest.Effectiveness of proposed system has been validated using case studies conducted on standard power system networks.展开更多
An analytical method of fault characteristic for the HVDC system based on frequency response characteristics of boundary elements is presented here.The computational formulas of transfer function and input impedance a...An analytical method of fault characteristic for the HVDC system based on frequency response characteristics of boundary elements is presented here.The computational formulas of transfer function and input impedance are deduced using the distributed parameter model of HVDC transmission line,and the amplitude-to-frequency-characteristics of the transfer function and input impedance are analyzed.Based on the amplitude-to-frequency difference between internal and external faults,a non-unit protection method for VSC-HVDC transmission line is presented.Using the current ratio of high-to-low-frequency,this protection method can distinguish internal from external fault.The presented algorithm only uses local-end current,has high operation speed,and is easy to implement.Simulations on a±200 kV VSC-HVDC system are conducted to demonstrate the validity and feasibility of the developed protection method.展开更多
文摘Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring system for detecting and classifying the type of transmission line fault occurred in a power grid.In contradiction to conventional methods,transmission line fault occurred at any locality within power grid can be identified and classified using measurements from phasor measurement unit(PMU)at one of the generator buses.This minimal requirement makes the proposed methodology ideal for providing backup protection.Spectral analysis of equivalent power factor angle(EPFA)variation has been adopted for detecting the occurrence of fault that occurred anywhere in the grid.Classification of the type of fault occurred is achieved from the spectral coefficients with the aid of artificial intelligence.The proposed system can considerably assist system protection center(SPC)in fault localization and to restore the line at the earliest.Effectiveness of proposed system has been validated using case studies conducted on standard power system networks.
基金supported in part by the Science and Technology Project Funds through Grid State Corporation(Grant No.SGSNKYOOKJJS1501564)the National Science Foundation of China(Grant No.51477131).
文摘An analytical method of fault characteristic for the HVDC system based on frequency response characteristics of boundary elements is presented here.The computational formulas of transfer function and input impedance are deduced using the distributed parameter model of HVDC transmission line,and the amplitude-to-frequency-characteristics of the transfer function and input impedance are analyzed.Based on the amplitude-to-frequency difference between internal and external faults,a non-unit protection method for VSC-HVDC transmission line is presented.Using the current ratio of high-to-low-frequency,this protection method can distinguish internal from external fault.The presented algorithm only uses local-end current,has high operation speed,and is easy to implement.Simulations on a±200 kV VSC-HVDC system are conducted to demonstrate the validity and feasibility of the developed protection method.