Block boundary value methods(BBVMs)are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation(DDAESP).It is proved that the extended BBV...Block boundary value methods(BBVMs)are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation(DDAESP).It is proved that the extended BBVMs in some suitable conditions are globally stable and can obtain a unique exact solution of the DDAESP.Besides,whenever the classic Lipschitz conditions are satisfied,the extended BBVMs are preconsistent and pth order consistent.Moreover,through some numerical examples,the correctness of the theoretical results and computational validity of the extended BBVMs is further confirmed.展开更多
Let Γ be a portion of a C^(1,α) boundary of an n-dimensional domain D. Letu be a solution to a second order parabolic equation in D x (-T, T) and assume that u = 0 on Γ x(-T, T), 0 ∈ Γ. We prove that u satisfies ...Let Γ be a portion of a C^(1,α) boundary of an n-dimensional domain D. Letu be a solution to a second order parabolic equation in D x (-T, T) and assume that u = 0 on Γ x(-T, T), 0 ∈ Γ. We prove that u satisfies a three cylinder inequality near Γ x (—T, T). As aconsequence of the previous result we prove that if u(x,t) = O (|x|~k ) for every t ∈ (-T,T) andevery k ∈ N, then u is identically equal to zero.展开更多
In this paper we propose and analyze a backward differentiation formula(BDF)type numerical scheme for the Cahn-Hilliard equation with third order temporal accuracy.The Fourier pseudo-spectral method is used to discret...In this paper we propose and analyze a backward differentiation formula(BDF)type numerical scheme for the Cahn-Hilliard equation with third order temporal accuracy.The Fourier pseudo-spectral method is used to discretize space.The surface diffusion and the nonlinear chemical potential terms are treated implicitly,while the expansive term is approximated by a third order explicit extrapolation formula for the sake of solvability.In addition,a third order accurate Douglas-Dupont regularization term,in the form of−A_(0)△t^(2)△_( N)(φ^(n+1)−φ^(n)),is added in the numerical scheme.In particular,the energy stability is carefully derived in a modified version,so that a uniform bound for the original energy functional is available,and a theoretical justification of the coefficient A becomes available.As a result of this energy stability analysis,a uniform-in-time L_(N)^(6)bound of the numerical solution is obtained.And also,the optimal rate convergence analysis and error estimate are provided,in the L_(△t)^(∞)(0,T;L_(N)^(2))∩L^(2)_(△ t)(0,T;H_(h)^(2))norm,with the help of the L_(N)^(6)bound for the numerical solution.A few numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence.展开更多
In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt ...In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt a technique based on the “zero-energy-contribution” contribution, which separates the magnetic and fluid fields from the coupled system. Additionally, making use of the pressure projection methods, the pressure variable appears explicitly in the velocity field equation, and would be computed in the form of a Poisson equation. Therefore, the total system is divided into several smaller sub-systems that could be simulated at a significantly low cost. We prove the unconditional energy stability, unique solvability and optimal error estimates for the proposed scheme, and present numerical results to verify the accuracy, efficiency and stability of the scheme.展开更多
The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in whic...The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.展开更多
基金supported by the National Key R&D Program of China(2020YFA0709800)the National Natural Science Foundation of China(Nos.11901577,11971481,12071481,12001539)+4 种基金the Natural Science Foundation of Hunan(No.S2017JJQNJJ-0764)the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(No.2018MMAEZD004)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)the Research Fund of National University of Defense Technology(No.ZK19-37)The science and technology innovation Program of Hunan Province(No.2020RC2039).
文摘Block boundary value methods(BBVMs)are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation(DDAESP).It is proved that the extended BBVMs in some suitable conditions are globally stable and can obtain a unique exact solution of the DDAESP.Besides,whenever the classic Lipschitz conditions are satisfied,the extended BBVMs are preconsistent and pth order consistent.Moreover,through some numerical examples,the correctness of the theoretical results and computational validity of the extended BBVMs is further confirmed.
基金This work is partially supported by MURST,Grant No.MM01111258
文摘Let Γ be a portion of a C^(1,α) boundary of an n-dimensional domain D. Letu be a solution to a second order parabolic equation in D x (-T, T) and assume that u = 0 on Γ x(-T, T), 0 ∈ Γ. We prove that u satisfies a three cylinder inequality near Γ x (—T, T). As aconsequence of the previous result we prove that if u(x,t) = O (|x|~k ) for every t ∈ (-T,T) andevery k ∈ N, then u is identically equal to zero.
基金Supported in part by the Natural Science Foundation of Fujian ProvinceChina(No.2020J01796)Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics。
基金supported in part by the Computational Physics Key Laboratory of IAPCAM(P.R.China)under Grant 6142A05200103(K.Cheng)the National Science Foundation(USA)under Grant NSF DMS-2012669(C.Wang)Grants NSF DMS-1719854,DMS-2012634(S.Wise).
文摘In this paper we propose and analyze a backward differentiation formula(BDF)type numerical scheme for the Cahn-Hilliard equation with third order temporal accuracy.The Fourier pseudo-spectral method is used to discretize space.The surface diffusion and the nonlinear chemical potential terms are treated implicitly,while the expansive term is approximated by a third order explicit extrapolation formula for the sake of solvability.In addition,a third order accurate Douglas-Dupont regularization term,in the form of−A_(0)△t^(2)△_( N)(φ^(n+1)−φ^(n)),is added in the numerical scheme.In particular,the energy stability is carefully derived in a modified version,so that a uniform bound for the original energy functional is available,and a theoretical justification of the coefficient A becomes available.As a result of this energy stability analysis,a uniform-in-time L_(N)^(6)bound of the numerical solution is obtained.And also,the optimal rate convergence analysis and error estimate are provided,in the L_(△t)^(∞)(0,T;L_(N)^(2))∩L^(2)_(△ t)(0,T;H_(h)^(2))norm,with the help of the L_(N)^(6)bound for the numerical solution.A few numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence.
文摘In this paper, we propose a fully decoupled and linear scheme for the magnetohydrodynamic (MHD) equation with the backward differential formulation (BDF) and finite element method (FEM). To solve the system, we adopt a technique based on the “zero-energy-contribution” contribution, which separates the magnetic and fluid fields from the coupled system. Additionally, making use of the pressure projection methods, the pressure variable appears explicitly in the velocity field equation, and would be computed in the form of a Poisson equation. Therefore, the total system is divided into several smaller sub-systems that could be simulated at a significantly low cost. We prove the unconditional energy stability, unique solvability and optimal error estimates for the proposed scheme, and present numerical results to verify the accuracy, efficiency and stability of the scheme.
基金Supported by the Science Foundation of the Education Committee of Heilongjiang Province (11541269)the Youth Foundation of Heilongjiang University (QL200804)
基金supported by the National Natural Science Foundation of China(Nos.11061018,11261029)the Youth Foundation of Lanzhou Jiaotong University(No.2011028)+1 种基金the Long Yuan Young Creative Talents Support Program(No.252003)the Joint Funds of the Gansu Provincial Natural Science Foundation of China(No.1212RJZA043)
文摘The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.