为满足特大型水利水电工程中的大直径超长距离引水隧洞定期检测的重大需求,智能化水下机器人系统成为当前的研究热点。为提高水下机械臂建模的准确性与控制能力的精准性,该文首先提出一种融合Newton-Euler方程、Morison方程与非线性摩...为满足特大型水利水电工程中的大直径超长距离引水隧洞定期检测的重大需求,智能化水下机器人系统成为当前的研究热点。为提高水下机械臂建模的准确性与控制能力的精准性,该文首先提出一种融合Newton-Euler方程、Morison方程与非线性摩擦力的水下机械臂动力学模型建模及参数辨识方法,并在补偿已辨识模型的基础上,设计了一种利用径向基函数(radial basis function,RBF)神经网络补偿系统未建模与建模误差的自适应滑模控制方法。通过仿真,该文证明了该方法比传统比例积分微分(proportional integral differential,PID)控制和一般RBF网络自适应滑模控制具有更高的控制精度。展开更多
文摘为满足特大型水利水电工程中的大直径超长距离引水隧洞定期检测的重大需求,智能化水下机器人系统成为当前的研究热点。为提高水下机械臂建模的准确性与控制能力的精准性,该文首先提出一种融合Newton-Euler方程、Morison方程与非线性摩擦力的水下机械臂动力学模型建模及参数辨识方法,并在补偿已辨识模型的基础上,设计了一种利用径向基函数(radial basis function,RBF)神经网络补偿系统未建模与建模误差的自适应滑模控制方法。通过仿真,该文证明了该方法比传统比例积分微分(proportional integral differential,PID)控制和一般RBF网络自适应滑模控制具有更高的控制精度。