期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于主动学习的中文依存句法分析 被引量:10
1
作者 车万翔 张梅山 刘挺 《中文信息学报》 CSCD 北大核心 2012年第2期18-22,共5页
目前依存句法分析仍主要采用有指导的机器学习方法,即需要大规模高质量的树库作为训练语料,而现阶段中文依存树库资源相对较少,树库标注又是一件费时费力的工作。面对大量未标注语料,该文将主动学习应用到中文依存句法分析,优先选择句... 目前依存句法分析仍主要采用有指导的机器学习方法,即需要大规模高质量的树库作为训练语料,而现阶段中文依存树库资源相对较少,树库标注又是一件费时费力的工作。面对大量未标注语料,该文将主动学习应用到中文依存句法分析,优先选择句法模型预测不准的实例交由人工标注。该文提出并比较了多种衡量依存句法模型预测可信度的准则。实验表明,一方面,与随机选择标注实例相比,当使用相同数目训练实例时,主动学习使中文依存分析性能最高提升0.8%;另一方面,主动学习使依存分析达到相同准确率时只需标注更少量实例,人工标注量最多可减少30%。 展开更多
关键词 主动学习 依存句法 不确定性度量 委员会投票
下载PDF
基于主动学习的计算机病毒检测方法研究 被引量:6
2
作者 张勇 张卫民 欧庆于 《计算机与数字工程》 2011年第11期89-93,105,共6页
针对传统病毒检测方法存在的更新速度慢、对未知病毒检测能力不足等问题,该文对主动学习理论在计算机病毒检测方面的应用进行了研究,提出了一种基于支持向量机主动学习的计算机病毒检测模型结构。此外,为了改进病毒检测的精度问题及主... 针对传统病毒检测方法存在的更新速度慢、对未知病毒检测能力不足等问题,该文对主动学习理论在计算机病毒检测方面的应用进行了研究,提出了一种基于支持向量机主动学习的计算机病毒检测模型结构。此外,为了改进病毒检测的精度问题及主动学习过程的效率,利用相关n-gram方法实现了对样本文件的特征提取,并结合信任度测量理论实现了基于非确定抽样的询问功能。实验表明,该模型针对未知病毒具有较高的检测精度,并且能够极大地缩减训练时间及对训练数据的数量要求,提高系统的学习效率。 展开更多
关键词 病毒检测 主动学习 支持向量机 非确定性抽样
下载PDF
基于不确定性采样的自训练代价敏感支持向量机研究 被引量:5
3
作者 江彤 唐明珠 阳春华 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期561-566,共6页
针对样本集中的类不平衡性和样本标注代价昂贵问题,提出基于不确定性采样的自训练代价敏感支持向量机。不确定性采样通过支持向量数据描述评价未标注样本的不确定性,对不确定性高的未标注样本进行标注,同时利用自训练方法训练代价敏感... 针对样本集中的类不平衡性和样本标注代价昂贵问题,提出基于不确定性采样的自训练代价敏感支持向量机。不确定性采样通过支持向量数据描述评价未标注样本的不确定性,对不确定性高的未标注样本进行标注,同时利用自训练方法训练代价敏感支持向量,代价敏感支持向量机利用代价参数和核参数对未标注样本进行预测。实验结果表明:该算法能有效地降低平均期望误分类代价,减少样本集中样本需要标注次数。 展开更多
关键词 主动学习 代价敏感支持向量机 自训练方法 不确定性采样 支持向量数据描述
下载PDF
一种基于TCM主动学习的P2P流识别技术 被引量:1
4
作者 戴磊 云晓春 +1 位作者 张永铮 吴志刚 《高技术通讯》 EI CAS CSCD 北大核心 2010年第7期674-679,共6页
针对目前基于机器学习的流识别仍然存在着建立分类模型需要大量适用的训练数据,训练数据的标记需要依赖领域专家,因而导致工作量及难度过大和实用性不强的问题,采用主动学习技术提取少量高质量的训练样本进行建模,并结合支持向量机(SVM... 针对目前基于机器学习的流识别仍然存在着建立分类模型需要大量适用的训练数据,训练数据的标记需要依赖领域专家,因而导致工作量及难度过大和实用性不强的问题,采用主动学习技术提取少量高质量的训练样本进行建模,并结合支持向量机(SVM)分类算法提出了一种基于直推信任机(TCM)的样本筛选方法。实验结果表明,相对于已有的流识别方法,这种方法能够在仅依赖少量高质量训练样本的前提下,保证较高的召回率及较低的误报率,更适用于现实网络环境。 展开更多
关键词 支持向量机(SVM) 主动学习 直推信任机(TCM) 机器学习 不确定性采样
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部