Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neith...Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.展开更多
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva...The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.展开更多
文摘Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
文摘The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.