The solitary tract nucleus of the medulla with its limited watershed vascular capacity may occasionally be the focus of transient ischemia caused by the increased metabolic demands associated with frequent and intense...The solitary tract nucleus of the medulla with its limited watershed vascular capacity may occasionally be the focus of transient ischemia caused by the increased metabolic demands associated with frequent and intense neuronal stimulation from other organs and other parts of the brain. Case reports have suggested that these ischemic changes may sometimes result in the initiation of intense autonomic discharges, which can occasionally be fatal. Therapeutic interventions for the medulla oblongata are hamperedby its limited accessibility. Systemically administered pharmaceuticals may have some usefulness in future years. Previous experience with vagus nerve stimulation in the treatment of epilepsy suggests that it may have some usefulness in stabilizing medullary autonomic discharges. Computerized electronic stimulation of other cranial nerves may be helpful as well, especially the chorda tympani nerve, and may be most easily accomplished from implanted dental appliances, especially molar modules, transmitting signals via secondary transmitters procedurally placed on cranial nerves. Future technology may enable wireless signaling from the implanted dental appliance to the secondary transmitter placed at the nerve site. By the year 2050 subspecialists in medullary neurology and brain dentistry may use computerized electronic stimulation of cranial nerves to prevent sudden unexpected death and treat "chest pain from the brain".展开更多
文摘The solitary tract nucleus of the medulla with its limited watershed vascular capacity may occasionally be the focus of transient ischemia caused by the increased metabolic demands associated with frequent and intense neuronal stimulation from other organs and other parts of the brain. Case reports have suggested that these ischemic changes may sometimes result in the initiation of intense autonomic discharges, which can occasionally be fatal. Therapeutic interventions for the medulla oblongata are hamperedby its limited accessibility. Systemically administered pharmaceuticals may have some usefulness in future years. Previous experience with vagus nerve stimulation in the treatment of epilepsy suggests that it may have some usefulness in stabilizing medullary autonomic discharges. Computerized electronic stimulation of other cranial nerves may be helpful as well, especially the chorda tympani nerve, and may be most easily accomplished from implanted dental appliances, especially molar modules, transmitting signals via secondary transmitters procedurally placed on cranial nerves. Future technology may enable wireless signaling from the implanted dental appliance to the secondary transmitter placed at the nerve site. By the year 2050 subspecialists in medullary neurology and brain dentistry may use computerized electronic stimulation of cranial nerves to prevent sudden unexpected death and treat "chest pain from the brain".