The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate on...The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.展开更多
A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It ...A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It is composed of a stator constituted with a ring and a bar shaped transducer and two cone shaped rotors. The rotors were pressed on inner surface of the ring by means of a pre-pressure system. The bar shaped transducer has a sand- wich-like configuration,where two sets of piezoelectric element are bolted. One set excites a longitudinal vibration of the bar, and the other set excites a flexural vibration of the bar. The ring's traveling wave excited with the longitudinal vibration and the bending vibration of the bar transducer was simulated with FEM (finite element method). The prototype of the motor was made and investigated experimentally for its performance. Its maximum torque and rotating speed are 0.25 N · m and 50 r/min, respectively.展开更多
A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces...A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.展开更多
文摘The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.
基金Funded by the National Natural Sciences Foundation of China (No.10874090)Jiangsu Provincial High-Tech Project of China (No.BG2006005)
文摘A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It is composed of a stator constituted with a ring and a bar shaped transducer and two cone shaped rotors. The rotors were pressed on inner surface of the ring by means of a pre-pressure system. The bar shaped transducer has a sand- wich-like configuration,where two sets of piezoelectric element are bolted. One set excites a longitudinal vibration of the bar, and the other set excites a flexural vibration of the bar. The ring's traveling wave excited with the longitudinal vibration and the bending vibration of the bar transducer was simulated with FEM (finite element method). The prototype of the motor was made and investigated experimentally for its performance. Its maximum torque and rotating speed are 0.25 N · m and 50 r/min, respectively.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50875057 and 51075082)the State Key Laboratory of Robotics and Systems (HIT No. SKLRS200901A04)
文摘A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.