The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization a...The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.展开更多
An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great ...An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.展开更多
This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on ...This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on each array element is obtained by time reversing the signal received by the same element, which is generated by an imaginary source at the target. The excitation pulses from all array elements are transmitted and arrive at the target simultaneously, and focusing is achieved. The performance of the two methods is compared in numerical examples, and it is demonstrated that the proposed method achieves a satisfactory focusing and a good signal-to-noise ratio no matter where the target location is.展开更多
Two kinds of measurement errors have been observed in the recently developed UAT-2 ultrasonic anemometer.One is the flow distortion produced by a"blocking effect",and the other is the angle of attack caused ...Two kinds of measurement errors have been observed in the recently developed UAT-2 ultrasonic anemometer.One is the flow distortion produced by a"blocking effect",and the other is the angle of attack caused by the vertical misalignment of the instrument.Here,we study these errors and discuss the possible correction methods.Via a wind tunnel experiment and numerical simulation,a 3D calibration matrix was developed to correct the"blocking effect".In the field test,the angle of attack was detected by an inclinometer settled on the reference plane of the anemometer,and the instrumental misalignment or tilt was corrected by a coordinate transformation.The combined use of an inclinometer and the proposed correction method may help find a new approach for vertical velocity correction.展开更多
文摘The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.
基金the National Key R&D Program of China(Nos.2017YFA0205103 and 2018YFE020505)the National Natural Science Foundation of China(Nos.81571766 and 61771337)+1 种基金the Natural Science Foundation of Tianjin,China(No.17JCYBJC24400)the“111”Project of China(No.B07014).
文摘An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174322 and 11074273)the Research Council of Norway (GrantNo. 186923/I30)
文摘This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on each array element is obtained by time reversing the signal received by the same element, which is generated by an imaginary source at the target. The excitation pulses from all array elements are transmitted and arrive at the target simultaneously, and focusing is achieved. The performance of the two methods is compared in numerical examples, and it is demonstrated that the proposed method achieves a satisfactory focusing and a good signal-to-noise ratio no matter where the target location is.
基金The National Basic Research Program of China(Grant No.2010CB951804)The Strategy Guide for the Specific Task of the Chinese Academy of Sciences(Grant No.XDA10010403)+2 种基金The National Natural Science Foundation of China(Grant No.41375018)Special finance from the China Meteorological Administration(Grant No.GYHY200706034)The National Science and Technology Pillar Program(Grant No.2008BAC37B02)
文摘Two kinds of measurement errors have been observed in the recently developed UAT-2 ultrasonic anemometer.One is the flow distortion produced by a"blocking effect",and the other is the angle of attack caused by the vertical misalignment of the instrument.Here,we study these errors and discuss the possible correction methods.Via a wind tunnel experiment and numerical simulation,a 3D calibration matrix was developed to correct the"blocking effect".In the field test,the angle of attack was detected by an inclinometer settled on the reference plane of the anemometer,and the instrumental misalignment or tilt was corrected by a coordinate transformation.The combined use of an inclinometer and the proposed correction method may help find a new approach for vertical velocity correction.