为了提高双孢蘑菇多糖的提取得率和效率,并研究双孢蘑菇多糖的组分,在考察了单因素水料比、超声功率、超声时间对双孢蘑菇子实体多糖提取得率影响的基础上,采用Box-Behnken响应面设计法,建立了3个影响因素与双孢蘑菇子实体多糖提取得率...为了提高双孢蘑菇多糖的提取得率和效率,并研究双孢蘑菇多糖的组分,在考察了单因素水料比、超声功率、超声时间对双孢蘑菇子实体多糖提取得率影响的基础上,采用Box-Behnken响应面设计法,建立了3个影响因素与双孢蘑菇子实体多糖提取得率的回归方程,优化提取工艺。同时利用DEAE Sepharose F F阴离子层析法对多糖进行了分离。Design Expert软件分析结果表明:在水料比36∶1、超声功率594 W、超声时间17 min的优化工艺条件下,双孢蘑菇子实体多糖的提取得率可高达6.63%。分离出2个多糖组分,分子量分别为2.75×105和1.4×104。通过响应面法设计结合超声波辅助提取能提高提取效率、缩短提取时间和保护有效成分,具有一定实际应用价值。DEAE Sepharose F F层析柱对双孢蘑菇多糖具有良好的分离效果。展开更多
文摘为了提高双孢蘑菇多糖的提取得率和效率,并研究双孢蘑菇多糖的组分,在考察了单因素水料比、超声功率、超声时间对双孢蘑菇子实体多糖提取得率影响的基础上,采用Box-Behnken响应面设计法,建立了3个影响因素与双孢蘑菇子实体多糖提取得率的回归方程,优化提取工艺。同时利用DEAE Sepharose F F阴离子层析法对多糖进行了分离。Design Expert软件分析结果表明:在水料比36∶1、超声功率594 W、超声时间17 min的优化工艺条件下,双孢蘑菇子实体多糖的提取得率可高达6.63%。分离出2个多糖组分,分子量分别为2.75×105和1.4×104。通过响应面法设计结合超声波辅助提取能提高提取效率、缩短提取时间和保护有效成分,具有一定实际应用价值。DEAE Sepharose F F层析柱对双孢蘑菇多糖具有良好的分离效果。