We report on a two-arm hybrid high-power laser system(HPLS)able to deliver 2×10 PW femtosecond pulses,developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics(ELI-NP)Facility.A hybrid fron...We report on a two-arm hybrid high-power laser system(HPLS)able to deliver 2×10 PW femtosecond pulses,developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics(ELI-NP)Facility.A hybrid frontend(FE)based on a Ti:sapphire chirped pulse amplifier and a picosecond optical parametric chirped pulse amplifier based on beta barium borate(BBO)crystals,with a cross-polarized wave(XPW)filter in between,has been developed.It delivers 10 mJ laser pulses,at 10 Hz repetition rate,with more than 70 nm spectral bandwidth and high-intensity contrast,in the range of 1013:1.The high-energy Ti:sapphire amplifier stages of both arms were seeded from this common FE.The final high-energy amplifier,equipped with a 200 mm diameter Ti:sapphire crystal,has been pumped by six 100 J nanosecond frequency doubled Nd:glass lasers,at 1 pulse/min repetition rate.More than 300 J output pulse energy has been obtained by pumping with only 80%of the whole 600 J available pump energy.The compressor has a transmission efficiency of 74%and an output pulse duration of 22.7 fs was measured,thus demonstrating that the dual-arm HPLS has the capacity to generate 10 PW peak power femtosecond pulses.The reported results represent the cornerstone of the ELI-NP 2×10 PW femtosecond laser facility,devoted to fundamental and applied nuclear physics research.展开更多
We report on the generation and delivery of 10.2 PW peak power laser pulses,using the High Power Laser System at the Extreme Laser Infrastructure–Nuclear Physics facility.In this work we demonstrate for the first tim...We report on the generation and delivery of 10.2 PW peak power laser pulses,using the High Power Laser System at the Extreme Laser Infrastructure–Nuclear Physics facility.In this work we demonstrate for the first time,to the best of our knowledge,the compression and propagation of full energy,full aperture,laser pulses that reach a power level of more than 10 PW.展开更多
800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding cond...800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.展开更多
We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ...We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.展开更多
Ultra-high purity Yb_(2)O_(3) is the critical material of many high-tech materials such as laser glass and fiber,in which impurities seriously affect the laser color quality,intensity and power.In order to reduce the ...Ultra-high purity Yb_(2)O_(3) is the critical material of many high-tech materials such as laser glass and fiber,in which impurities seriously affect the laser color quality,intensity and power.In order to reduce the influence of impurities on the properties of laser materials,the purification process of Yb_(2)O_(3) was studied by comparing two kinds of resins(RT-1 and RS-1)using improved ion-exchange chromatography(IEC)method.In this study,through the synergistic improvement of resin structure and eluting system,the environmental pollution caused by ammonia water in the traditional IEC method was reduced,and the requirements of high temperature and pressure were cut.The ion exchange behavior and impurity removal mechanism in the resin column during the loading and eluting process were compared and analyzed.The experimental results show that RS-1 resin is all superior to RT-1resin in elements selectivity,ion exchange capacity and impurities removal rate.After separation and purification by IEC with RS-1 resin,the total removal rate of rare earth impurities was 77.59%and that of non-rare earth impurities was 95.86%when Yb recovery was more than 70%,both higher than that of RT-1 resin(73.26%and 83.18%).This indicates that the improved IEC method is very effective in separating and removing different metal impurities from Yb_(2)O_(3).The pilot test results of IEC method separating and purifying Yb_(2)O_(3) with RS-1 resin show that the purity of Yb_(2)O_(3) can be increased from 99.9929%to 99.9997%by IEC method.It has exhibited huge potential of preparing ultra-high purity Yb_(2)O_(3),especially the deep removal of non-rare earth impurities.展开更多
AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN ...AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN features)+ResNet50(Residua Network 50)+FPN(Feature Pyramid Networks)method for detecting hemorrhagic spots,cotton wool spots,exudates,and microaneurysms in DR ultra-widefield SLO.Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate.Feature fusion was carried out by the feature pyramid network FPN,which significantly improved lesion detection rates in SLO fundus images.RESULTS:By analyzing 1076 ultra-widefield SLO images provided by our hospital,with a resolution of 2600×2048 dpi,the accuracy rates for hemorrhagic spots,cotton wool spots,exudates,and microaneurysms were found to be 87.23%,83.57%,86.75%,and 54.94%,respectively.CONCLUSION:The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO,providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.展开更多
To address the inhomogeneous microstructure and improve the mechanical properties of DT300 ultra-high strength steel specimens fabricated by laser powder bed fusion,different post-heat treatment schedules are performe...To address the inhomogeneous microstructure and improve the mechanical properties of DT300 ultra-high strength steel specimens fabricated by laser powder bed fusion,different post-heat treatment schedules are performed.With the increase in austenitizing temperature and time,the migration rate of austenite grain boundaries continuously increases with the dissolution of nano-carbides,and the formation of nano-oxides and twin martensite is also inhibited accordingly.The rapid growth in the size of prior austenite grains and martensite laths,as well as the decrease in the content of nano-oxides and twin martensite,led to a rapid decrease in the strength(yield strength and ultimate tensile strength)from HT2 to HTF specimens.The HT1 specimens(austenitizing at 830℃for 30 min,then oil quenching and tempering at 300℃for 120 min and finally air cooling)display excellent mechanical properties of yield strength of 1572 MPa,ultimate tensile strength of 1847 MPa,elongation of 9.84%,and fracture toughness of 106 MPa m^(1/2),which are counterparts to those of conventional DT300 steel forgings after heat treatment.展开更多
We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification,hollow-core fiber(HCF)and second harmonic generation processes.In this setup,the spectr...We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification,hollow-core fiber(HCF)and second harmonic generation processes.In this setup,the spectrum of an approximately 1.8μm laser pulse has near 1μm full bandwidth by employing an argon gas-filled HCF.Subsequently,after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair,9.6 fs(~3cycles)and 150μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated.The energy stability of the output laser pulse is excellent with 0.8%(root mean square)over 20 min,and the temporal contrast is>10^(12)at-10 ps before the main pulse.The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.展开更多
This study discusses the welding properties for the components of an aluminum-alloy ultra-high vacuum chamber and beam position monitor (BPM).The welding parameters include the modes of laser output (pulsed wave an...This study discusses the welding properties for the components of an aluminum-alloy ultra-high vacuum chamber and beam position monitor (BPM).The welding parameters include the modes of laser output (pulsed wave and continuous wave),welding speed,shield gas flow,welding bead structure,and focusing distance.The results showed that the welding defect rate of the pulsed wave type was larger than that of the continuous wave type.The crack in the welding bead reduced with decreasing welding speed.The fusion penetration of the welding bead was higher when the focusing distance was long enough to deepen into the welding material.Weld morphology during the experimental process revealed the proper flow of shield gas.The adaptability design of the welding bead structure in the preceding processes had more effect on overall welding structure and morphology.展开更多
AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding jo...AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding joints were investigated, and the mechanical property of the welding joints was analyzed. The experimental results showed that the fusion zone of welding joint mainly consisted of columnar grains and a fine dendrite substructure grew epitaxially from the matrix. With the other conditions remaining unchanged, a finer weld microstructure was along with the scanning speed increase. The solidification microstructure gradually transformed from cellular crystal into dendrite crystal and the spaces of dendrite secondary arms rose from the fusion line to the center of the fusion zone. In the fusion zone of the weld, the rapid cooling caused the formation of martensite, which led the microhardness of the fusion zone higher than that of the matrix and the heat affected zone. The tensile strength of the welding joints was tested as 1 700 MPa, which was about 87% of the matrix. However, the tensile strength of the welding joints without defects existed was tested as 1832 MPa, which was about 94% of the matrix.展开更多
Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and ...Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.展开更多
Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting no...Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers.展开更多
After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, wi...After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.展开更多
We investigate the electron-positron creation process from multiple equally spaced distributed oscillating electric fields.The computational quantum field theory(CQFT)is applied to analyze the effect of the number of ...We investigate the electron-positron creation process from multiple equally spaced distributed oscillating electric fields.The computational quantum field theory(CQFT)is applied to analyze the effect of the number of local fields,the distance between them,and their potential height on the created particle number.It is found that whether adjacent electric fields overlap plays an important role.The creation rate exhibits a direct linear relationship with the number of fields when they do not overlap,but exceeds the sum of the rate when the fields alone.They exhibit a distinctly nonlinear relationship when they overlap,and in particular exhibit a quadratic relationship when the fields completely overlap.These phenomena corroborate that the particle pair creation in the interaction region is non-uniform and influenced by the strength of the central strongest electric field.展开更多
基金Extreme Light Infrastructure Nuclear Physics(ELI-NP)Phase II,is a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund and the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)。
文摘We report on a two-arm hybrid high-power laser system(HPLS)able to deliver 2×10 PW femtosecond pulses,developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics(ELI-NP)Facility.A hybrid frontend(FE)based on a Ti:sapphire chirped pulse amplifier and a picosecond optical parametric chirped pulse amplifier based on beta barium borate(BBO)crystals,with a cross-polarized wave(XPW)filter in between,has been developed.It delivers 10 mJ laser pulses,at 10 Hz repetition rate,with more than 70 nm spectral bandwidth and high-intensity contrast,in the range of 1013:1.The high-energy Ti:sapphire amplifier stages of both arms were seeded from this common FE.The final high-energy amplifier,equipped with a 200 mm diameter Ti:sapphire crystal,has been pumped by six 100 J nanosecond frequency doubled Nd:glass lasers,at 1 pulse/min repetition rate.More than 300 J output pulse energy has been obtained by pumping with only 80%of the whole 600 J available pump energy.The compressor has a transmission efficiency of 74%and an output pulse duration of 22.7 fs was measured,thus demonstrating that the dual-arm HPLS has the capacity to generate 10 PW peak power femtosecond pulses.The reported results represent the cornerstone of the ELI-NP 2×10 PW femtosecond laser facility,devoted to fundamental and applied nuclear physics research.
基金Extreme Light Infrastructure Nuclear Physics (ELI-NP)Phase Ⅱ,is a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund and the Competitiveness Operational Programme (1/07.07.2016, COP, ID 1334)the support contract sponsored by the Romanian Ministry of Research and Innovation:PN 19 0601 05
文摘We report on the generation and delivery of 10.2 PW peak power laser pulses,using the High Power Laser System at the Extreme Laser Infrastructure–Nuclear Physics facility.In this work we demonstrate for the first time,to the best of our knowledge,the compression and propagation of full energy,full aperture,laser pulses that reach a power level of more than 10 PW.
文摘800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.
基金Supported by the National Natural Science Foundation of China under Grant No 91536217the West Light Foundation of the Chinese Academy of Sciences under Grant No 2013ZD02the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2015334
文摘We present two cavity-stabilized lasers at 1555 nm, which are built to be the frequency source for a transportable photonic microwave generation system. The frequency instability reaches the thermal noise limit (7 ×10-16) of the 10-cm ultra-low expansion glass cavity at 1-10s averaging time and the beat signal of the two lasers reveals a remarkable linewidth of 185mHz.
基金financially supported by the National Key R&D Program of China(No.2020YFC1909004)China Postdoctoral Science Foundation(Nos.2020M680615 and 2021T140581)the Youth Fund Project of GRINM。
文摘Ultra-high purity Yb_(2)O_(3) is the critical material of many high-tech materials such as laser glass and fiber,in which impurities seriously affect the laser color quality,intensity and power.In order to reduce the influence of impurities on the properties of laser materials,the purification process of Yb_(2)O_(3) was studied by comparing two kinds of resins(RT-1 and RS-1)using improved ion-exchange chromatography(IEC)method.In this study,through the synergistic improvement of resin structure and eluting system,the environmental pollution caused by ammonia water in the traditional IEC method was reduced,and the requirements of high temperature and pressure were cut.The ion exchange behavior and impurity removal mechanism in the resin column during the loading and eluting process were compared and analyzed.The experimental results show that RS-1 resin is all superior to RT-1resin in elements selectivity,ion exchange capacity and impurities removal rate.After separation and purification by IEC with RS-1 resin,the total removal rate of rare earth impurities was 77.59%and that of non-rare earth impurities was 95.86%when Yb recovery was more than 70%,both higher than that of RT-1 resin(73.26%and 83.18%).This indicates that the improved IEC method is very effective in separating and removing different metal impurities from Yb_(2)O_(3).The pilot test results of IEC method separating and purifying Yb_(2)O_(3) with RS-1 resin show that the purity of Yb_(2)O_(3) can be increased from 99.9929%to 99.9997%by IEC method.It has exhibited huge potential of preparing ultra-high purity Yb_(2)O_(3),especially the deep removal of non-rare earth impurities.
基金Supported by Hunan Provincial Science and Technology Department Clinical Medical Technology Innovation Guidance Project(No.2021SK50103)。
文摘AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN features)+ResNet50(Residua Network 50)+FPN(Feature Pyramid Networks)method for detecting hemorrhagic spots,cotton wool spots,exudates,and microaneurysms in DR ultra-widefield SLO.Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate.Feature fusion was carried out by the feature pyramid network FPN,which significantly improved lesion detection rates in SLO fundus images.RESULTS:By analyzing 1076 ultra-widefield SLO images provided by our hospital,with a resolution of 2600×2048 dpi,the accuracy rates for hemorrhagic spots,cotton wool spots,exudates,and microaneurysms were found to be 87.23%,83.57%,86.75%,and 54.94%,respectively.CONCLUSION:The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO,providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.
基金funded by the Science and Technology Project of Guangdong Province (2020B090923001)Guangdong Basic and Applied Basic Research Foundation (2023A1515010384)The Fundamental Research Funds for the Central Universities (2023ZYGXZR005).
文摘To address the inhomogeneous microstructure and improve the mechanical properties of DT300 ultra-high strength steel specimens fabricated by laser powder bed fusion,different post-heat treatment schedules are performed.With the increase in austenitizing temperature and time,the migration rate of austenite grain boundaries continuously increases with the dissolution of nano-carbides,and the formation of nano-oxides and twin martensite is also inhibited accordingly.The rapid growth in the size of prior austenite grains and martensite laths,as well as the decrease in the content of nano-oxides and twin martensite,led to a rapid decrease in the strength(yield strength and ultimate tensile strength)from HT2 to HTF specimens.The HT1 specimens(austenitizing at 830℃for 30 min,then oil quenching and tempering at 300℃for 120 min and finally air cooling)display excellent mechanical properties of yield strength of 1572 MPa,ultimate tensile strength of 1847 MPa,elongation of 9.84%,and fracture toughness of 106 MPa m^(1/2),which are counterparts to those of conventional DT300 steel forgings after heat treatment.
基金supported by the National Key R&D Program of China(2017YFE0123700)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB1603)+3 种基金the National Natural Science Foundation of China(61925507,62075227,12004402,61635012)the Program of Shanghai Academic/Technology Research Leader(18XD1404200)the Shanghai Municipal Science and Technology Major Project(2017SHZDZX02)the Youth Innovation Promotion Association CAS(2020248)
文摘We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification,hollow-core fiber(HCF)and second harmonic generation processes.In this setup,the spectrum of an approximately 1.8μm laser pulse has near 1μm full bandwidth by employing an argon gas-filled HCF.Subsequently,after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair,9.6 fs(~3cycles)and 150μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated.The energy stability of the output laser pulse is excellent with 0.8%(root mean square)over 20 min,and the temporal contrast is>10^(12)at-10 ps before the main pulse.The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.
文摘This study discusses the welding properties for the components of an aluminum-alloy ultra-high vacuum chamber and beam position monitor (BPM).The welding parameters include the modes of laser output (pulsed wave and continuous wave),welding speed,shield gas flow,welding bead structure,and focusing distance.The results showed that the welding defect rate of the pulsed wave type was larger than that of the continuous wave type.The crack in the welding bead reduced with decreasing welding speed.The fusion penetration of the welding bead was higher when the focusing distance was long enough to deepen into the welding material.Weld morphology during the experimental process revealed the proper flow of shield gas.The adaptability design of the welding bead structure in the preceding processes had more effect on overall welding structure and morphology.
基金Funded by the National Natural Science Foundation of China(Nos.51201087,51165038)the Project of Jiangxi Province of Education(No.GJJ13493)+1 种基金the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201306)the China Postdoctoral Science Foundation(No.2014M552485)
文摘AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding joints were investigated, and the mechanical property of the welding joints was analyzed. The experimental results showed that the fusion zone of welding joint mainly consisted of columnar grains and a fine dendrite substructure grew epitaxially from the matrix. With the other conditions remaining unchanged, a finer weld microstructure was along with the scanning speed increase. The solidification microstructure gradually transformed from cellular crystal into dendrite crystal and the spaces of dendrite secondary arms rose from the fusion line to the center of the fusion zone. In the fusion zone of the weld, the rapid cooling caused the formation of martensite, which led the microhardness of the fusion zone higher than that of the matrix and the heat affected zone. The tensile strength of the welding joints was tested as 1 700 MPa, which was about 87% of the matrix. However, the tensile strength of the welding joints without defects existed was tested as 1832 MPa, which was about 94% of the matrix.
基金the University of Tennessee Research Foundation and a grant from the National Natural Science Foundation of China(51575016).
文摘Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.
基金The authors gratefully acknowledge support by the Graduate School in Advanced Optical Technologies(SAOT)of the Friedrich–Alexander-University of Erlangen–Nürnberg,and the Bayerisches Laserzentrum GmbH.
文摘Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers.
文摘After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.
基金the National Natural Science Foundation of China(Grant Nos.11974419,11605286,and 12204001)the National Key R&D Program of China(Grant No.2018YFA0404802)。
文摘We investigate the electron-positron creation process from multiple equally spaced distributed oscillating electric fields.The computational quantum field theory(CQFT)is applied to analyze the effect of the number of local fields,the distance between them,and their potential height on the created particle number.It is found that whether adjacent electric fields overlap plays an important role.The creation rate exhibits a direct linear relationship with the number of fields when they do not overlap,but exceeds the sum of the rate when the fields alone.They exhibit a distinctly nonlinear relationship when they overlap,and in particular exhibit a quadratic relationship when the fields completely overlap.These phenomena corroborate that the particle pair creation in the interaction region is non-uniform and influenced by the strength of the central strongest electric field.