An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then agg...An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.展开更多
The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Eff...The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow ex-pansion and compression on the cellular detonation cell were investigated to illus-trate the mechanism of the transverse wave development and the cellular detona-tion cell evolution. By examining gas composition variations behind the leading shock,the chemical reaction rate,the reaction zone length,and thermodynamic parameters,two kinds of the abnormal detonation waves were identified. To explore their development mechanism,chemical reactions,reflected shocks and rarefac-tion waves were discussed,which interact with each other and affect the cellular detonation in different ways.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05005-004-002,2016ZX05031-002-001)National Natural Science Foundation of China(41872138)Open Foundation of Top Disciplines in Yangtze University(2019KFJJ0818029)。
文摘An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.
文摘The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow ex-pansion and compression on the cellular detonation cell were investigated to illus-trate the mechanism of the transverse wave development and the cellular detona-tion cell evolution. By examining gas composition variations behind the leading shock,the chemical reaction rate,the reaction zone length,and thermodynamic parameters,two kinds of the abnormal detonation waves were identified. To explore their development mechanism,chemical reactions,reflected shocks and rarefac-tion waves were discussed,which interact with each other and affect the cellular detonation in different ways.