The effects of the two-step ageing parameters (temperature and time) on the mechanical properties and electrical conductivity of 7B04 (A1-Zn-Mg-Cu) pre-stretched thick plates were studied. The results reveal that ...The effects of the two-step ageing parameters (temperature and time) on the mechanical properties and electrical conductivity of 7B04 (A1-Zn-Mg-Cu) pre-stretched thick plates were studied. The results reveal that the initial T1 ageing contributes a major increase of the tensile strength, and the 0.2% proof stress value reaches 482 MPa after ageing for 7 h at 115℃. Behavioral differences in the tensile properties of the alloy after the two-step ageing treatment were less with the first-step ageing at 115~C for different time periods (7, 14, and 21 h). The effects of the second ageing parameters on the properties and microstructure of the 7B04 alloy were remarkable. TEM analysis of the samples aged at Temper I (7 h at 115℃ + 12 h at 160℃) and Temper II (7 h at 115℃ + 16 h at 165℃) indicates that two kinds of phases, i.e. 11' and 11 phases, precipitate from the matrix and efficiently improve the tensile strength of the alloy, and the grain boundary precipitates are coarse and discrete. There are obvious precipitate free zones (PFZs) along the grain boundary in the microstructure of the alloy after the two-step ageing treatment.展开更多
A series of Y2.985Al5–xGaxO12:0.015Ce(YAGG:Ce,x=0,1,2,3,4,5)transparent ceramics were prepared via a solid-state reaction method.Two-step sintering technique was proved to be an effective approach to prepare function...A series of Y2.985Al5–xGaxO12:0.015Ce(YAGG:Ce,x=0,1,2,3,4,5)transparent ceramics were prepared via a solid-state reaction method.Two-step sintering technique was proved to be an effective approach to prepare functional ceramics with high Ga concentration,and Y3Ga5O12(YGG)transparent ceramic was successfully prepared for the first time.According to the variation of Al/Ga ratio,regulation of band structure and luminescence properties of YAGG:Ce transparent ceramics were effectively investigated.When Ga substitutes Al sites,the tetrahedral site is more favorable compared to the octahedral site for Ga to occupy according to the first-principle calculation.A continuous blue shift of the emission from 565 to 515 nm was achieved as Ga was gradually introduced into Y3Al5O12:Ce matrix.High quality green light was obtained by coupling the YAGG:Ce ceramics with commercial blue InGaN chips.Transparent luminescence ceramics accomplished in this work can be quite prospective for high power LED application.展开更多
黄曲霉毒素解毒酶(ADTZ)来源于真菌Armillariella tabescens,它能够有效地分解黄曲霉毒素。为了使重组蛋白rADTZ能在毕氏酵母中高效分泌表达,根据毕氏酵母密码子的偏好性对rADTZ的5末端的编码区域进行了优化,利用two-step DNA synthsis...黄曲霉毒素解毒酶(ADTZ)来源于真菌Armillariella tabescens,它能够有效地分解黄曲霉毒素。为了使重组蛋白rADTZ能在毕氏酵母中高效分泌表达,根据毕氏酵母密码子的偏好性对rADTZ的5末端的编码区域进行了优化,利用two-step DNA synthsis技术合成出ADTZ优化的基因序列OPT-ADTZ,并与组成型表达载体pGAPZaA连接,构建重组质粒pNOA,线性化pNOA后转化至毕氏酵母GS115中,实现了密码子优化的rADTZ组成型分泌表达。展开更多
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced wi...We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.展开更多
Two-step steam reforming of methane (SRM) is a novel chemical looping process towards the production of pure hydrogen and syngas (synthesis gas), consisting of a syngas production step and a water-splitting step. Rene...Two-step steam reforming of methane (SRM) is a novel chemical looping process towards the production of pure hydrogen and syngas (synthesis gas), consisting of a syngas production step and a water-splitting step. Renewable energy can be used to drive this process for hydrogen production, especially solar energy. CeO2-Fe2O3 complex oxide oxygen carrier was prepared by the impregnation method and characterized by means of X-ray diffractometer (XRD), Raman spectroscopy (Raman) and hydrogen programmed reduction (H2-TPR). CH4 temperature programmed and isothermal reactions were adopted to test syngas production reactivity, and water splitting reaction was employed to investigate water-splitting activity. Moreover, two-step SRM performance was evaluated by a successive redox cycle. The results showed that CO-uncontaminated H2 and highly selective syngas (with H2/CO ratio close to 2) could be respectively obtained from two steps, and CeFeO3 formation was found in the first redox cycle and proved to be enhanced by the redox treatment. After 10 successive cycles, obvious CeFeO3 phase was detected, which may be responsible for favorable successive redox cycle performances.展开更多
Graphene nanoplatelets/aluminum (GNPs/Al) nanocomposites were fabricated using a novel two-step method. High resolution transmission electron microscope (HRTEM), Raman, field emission scanning electron microscopy ...Graphene nanoplatelets/aluminum (GNPs/Al) nanocomposites were fabricated using a novel two-step method. High resolution transmission electron microscope (HRTEM), Raman, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), EDS mapping, and mechanical testing system (MTS) were applied to characterize the microstructure and mechanical properties of the GNPs/Al nanocomposites. The GNPs were homogeneously dispersed in GNPs/Al nanocomposites, and presented a fine interface behavior and microstructure characteristics. A harmful phase, aluminum carbide (Al4C3), was not observed in significant quantities in the nanocomposite. Compared with pure aluminum, the mechanical properties of the GNPs/Al nanocomposites containing a low volume fraction of GNPs were sharply improved. When 0.5 vol.%, 1.0 vol.%, and 2.0 vol.% GNPs were added to the aluminum matrix, the average compressive strength of GNPs/A1 nanocomposites was 297, 345, and 527 MPa, respectively, which remarkably increased the strength over the original aluminum by 330% to 586%.展开更多
Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot s...Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot satisfy the machining requirements of difficult-to-machine materials with high hardness,high strength,and strong wearing resistance.Although superhard abrasives can machine the above-mentioned materials,their dressing and manufacturing costs are high.By contrast,ceramic corundum abrasives fabricated by sol–gel method is a costeffective product between conventional and superhard abrasives.Ceramic corundum abrasives exhibit self-sharpening and high toughness.In this review,the optimization methods of ceramic corundum abrasive properties are introduced from three aspects:precursor synthesis,particle shaping,and sintering.Firstly,the functional mechanism of seeds and additives on the microstructural and mechanical properties of abrasives is analyzed.Specifically,seeds can reduce the phase transition temperature and improve fracture toughness.The grain size and uniformly dense structure can be controlled by applying an appropriate amount of multicomponent additives.Then,the urgent need of engineering application and machinability of special shape ceramic corundum abrasives is reviewed,and three methods of abrasive shaping are summarized.The micromold replication technique is highly advanced and can be used to prepare functional abrasives.Additionally,the influence of a new sintering method,namely,two-step sintering technique,on the microstructural and mechanical performance of ceramic corundum abrasives is summarized.Finally,the challenge and developmental trend of the optimization of ceramic corundum abrasives are prospected.展开更多
In this article, a facile two-step activation method, coupled with phosphoric acid(H3PO4)-assisted pretreatment and followed KOH activation,was reported for constructing hierarchical porous carbon(HPC) materials deriv...In this article, a facile two-step activation method, coupled with phosphoric acid(H3PO4)-assisted pretreatment and followed KOH activation,was reported for constructing hierarchical porous carbon(HPC) materials derived from lignin. The introduction of H3PO4, cross-linked with lignin sources generated phosphate(and/or polyphosphate) ester groups throughout the lignin structure, which endowed the pre-activated intermediate char(IC)with a hierarchical porous structure. Such phosphate esters contributed to the multi-scale pore structure within the pre-activated IC, which was beneficial for the uniform distribution and impregnation of subsequent KOH activators,thus leading to the formation of HPC materials. The as-prepared HPC exhibited a large specific surface area(SSA) of 1345.1 m^2/g, which ensures the accessibility of the ion diffusion pathways. The supercapacitors integrated with HPC delivered a high specific capacitance of 241 F/g(in a threeelectrode system) and outstanding rate capability with an 80.9% capacitance retention from 0.5 A/g to an ultra-high current density of 50 A/g.展开更多
基金the National High-Tech Research Development Program of China (No. 2003AA331100).
文摘The effects of the two-step ageing parameters (temperature and time) on the mechanical properties and electrical conductivity of 7B04 (A1-Zn-Mg-Cu) pre-stretched thick plates were studied. The results reveal that the initial T1 ageing contributes a major increase of the tensile strength, and the 0.2% proof stress value reaches 482 MPa after ageing for 7 h at 115℃. Behavioral differences in the tensile properties of the alloy after the two-step ageing treatment were less with the first-step ageing at 115~C for different time periods (7, 14, and 21 h). The effects of the second ageing parameters on the properties and microstructure of the 7B04 alloy were remarkable. TEM analysis of the samples aged at Temper I (7 h at 115℃ + 12 h at 160℃) and Temper II (7 h at 115℃ + 16 h at 165℃) indicates that two kinds of phases, i.e. 11' and 11 phases, precipitate from the matrix and efficiently improve the tensile strength of the alloy, and the grain boundary precipitates are coarse and discrete. There are obvious precipitate free zones (PFZs) along the grain boundary in the microstructure of the alloy after the two-step ageing treatment.
基金supported by the National Key R & D Program of China (2016YFC0101800)National Natural Science Foundation of China (51672286, U1832159, 51772185)Science and Technology Major Project of Ningbo Municipality (2017C110028)
文摘A series of Y2.985Al5–xGaxO12:0.015Ce(YAGG:Ce,x=0,1,2,3,4,5)transparent ceramics were prepared via a solid-state reaction method.Two-step sintering technique was proved to be an effective approach to prepare functional ceramics with high Ga concentration,and Y3Ga5O12(YGG)transparent ceramic was successfully prepared for the first time.According to the variation of Al/Ga ratio,regulation of band structure and luminescence properties of YAGG:Ce transparent ceramics were effectively investigated.When Ga substitutes Al sites,the tetrahedral site is more favorable compared to the octahedral site for Ga to occupy according to the first-principle calculation.A continuous blue shift of the emission from 565 to 515 nm was achieved as Ga was gradually introduced into Y3Al5O12:Ce matrix.High quality green light was obtained by coupling the YAGG:Ce ceramics with commercial blue InGaN chips.Transparent luminescence ceramics accomplished in this work can be quite prospective for high power LED application.
文摘黄曲霉毒素解毒酶(ADTZ)来源于真菌Armillariella tabescens,它能够有效地分解黄曲霉毒素。为了使重组蛋白rADTZ能在毕氏酵母中高效分泌表达,根据毕氏酵母密码子的偏好性对rADTZ的5末端的编码区域进行了优化,利用two-step DNA synthsis技术合成出ADTZ优化的基因序列OPT-ADTZ,并与组成型表达载体pGAPZaA连接,构建重组质粒pNOA,线性化pNOA后转化至毕氏酵母GS115中,实现了密码子优化的rADTZ组成型分泌表达。
基金supported by the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 10KJB180004)
文摘We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
基金Project support by the National Natural Science Foundation of China (50574046, 50774038)the Natural Science Foundation of Yunnan Prov-ince (2008E030M)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (20095314120005)2010 Innovation Fund of Kunming University of Science and Technology
文摘Two-step steam reforming of methane (SRM) is a novel chemical looping process towards the production of pure hydrogen and syngas (synthesis gas), consisting of a syngas production step and a water-splitting step. Renewable energy can be used to drive this process for hydrogen production, especially solar energy. CeO2-Fe2O3 complex oxide oxygen carrier was prepared by the impregnation method and characterized by means of X-ray diffractometer (XRD), Raman spectroscopy (Raman) and hydrogen programmed reduction (H2-TPR). CH4 temperature programmed and isothermal reactions were adopted to test syngas production reactivity, and water splitting reaction was employed to investigate water-splitting activity. Moreover, two-step SRM performance was evaluated by a successive redox cycle. The results showed that CO-uncontaminated H2 and highly selective syngas (with H2/CO ratio close to 2) could be respectively obtained from two steps, and CeFeO3 formation was found in the first redox cycle and proved to be enhanced by the redox treatment. After 10 successive cycles, obvious CeFeO3 phase was detected, which may be responsible for favorable successive redox cycle performances.
基金This project was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51562027 and 11372100), and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology.
文摘Graphene nanoplatelets/aluminum (GNPs/Al) nanocomposites were fabricated using a novel two-step method. High resolution transmission electron microscope (HRTEM), Raman, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), EDS mapping, and mechanical testing system (MTS) were applied to characterize the microstructure and mechanical properties of the GNPs/Al nanocomposites. The GNPs were homogeneously dispersed in GNPs/Al nanocomposites, and presented a fine interface behavior and microstructure characteristics. A harmful phase, aluminum carbide (Al4C3), was not observed in significant quantities in the nanocomposite. Compared with pure aluminum, the mechanical properties of the GNPs/Al nanocomposites containing a low volume fraction of GNPs were sharply improved. When 0.5 vol.%, 1.0 vol.%, and 2.0 vol.% GNPs were added to the aluminum matrix, the average compressive strength of GNPs/A1 nanocomposites was 297, 345, and 527 MPa, respectively, which remarkably increased the strength over the original aluminum by 330% to 586%.
基金the following organizations:the National Natural Science Foundation of China(Nos.51975305,51905289)the Major Research Project of Shandong Province(Nos.2019GGX104040 and2019GSF108236)+2 种基金the Shandong Provincial Natural Science Foundation of China(Nos.ZR2019PEE008)Major Science and Technology Innovation Engineering Projects of Shandong Province(No.2019JZZY020111)Applied Basic Research Youth Project of Qingdao Science and Technology Plan(No.19-6-2-63-cg)。
文摘Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot satisfy the machining requirements of difficult-to-machine materials with high hardness,high strength,and strong wearing resistance.Although superhard abrasives can machine the above-mentioned materials,their dressing and manufacturing costs are high.By contrast,ceramic corundum abrasives fabricated by sol–gel method is a costeffective product between conventional and superhard abrasives.Ceramic corundum abrasives exhibit self-sharpening and high toughness.In this review,the optimization methods of ceramic corundum abrasive properties are introduced from three aspects:precursor synthesis,particle shaping,and sintering.Firstly,the functional mechanism of seeds and additives on the microstructural and mechanical properties of abrasives is analyzed.Specifically,seeds can reduce the phase transition temperature and improve fracture toughness.The grain size and uniformly dense structure can be controlled by applying an appropriate amount of multicomponent additives.Then,the urgent need of engineering application and machinability of special shape ceramic corundum abrasives is reviewed,and three methods of abrasive shaping are summarized.The micromold replication technique is highly advanced and can be used to prepare functional abrasives.Additionally,the influence of a new sintering method,namely,two-step sintering technique,on the microstructural and mechanical performance of ceramic corundum abrasives is summarized.Finally,the challenge and developmental trend of the optimization of ceramic corundum abrasives are prospected.
基金supported by the Fundamental Research Funds for the Central Universities(BLX201823)Beijing Forestry University Outstanding Young Talent Cultivation Project(2019JQ03017)Beijing Municipal Natural Science Foundation(6182031).
文摘In this article, a facile two-step activation method, coupled with phosphoric acid(H3PO4)-assisted pretreatment and followed KOH activation,was reported for constructing hierarchical porous carbon(HPC) materials derived from lignin. The introduction of H3PO4, cross-linked with lignin sources generated phosphate(and/or polyphosphate) ester groups throughout the lignin structure, which endowed the pre-activated intermediate char(IC)with a hierarchical porous structure. Such phosphate esters contributed to the multi-scale pore structure within the pre-activated IC, which was beneficial for the uniform distribution and impregnation of subsequent KOH activators,thus leading to the formation of HPC materials. The as-prepared HPC exhibited a large specific surface area(SSA) of 1345.1 m^2/g, which ensures the accessibility of the ion diffusion pathways. The supercapacitors integrated with HPC delivered a high specific capacitance of 241 F/g(in a threeelectrode system) and outstanding rate capability with an 80.9% capacitance retention from 0.5 A/g to an ultra-high current density of 50 A/g.