Magnetic orderings, i.e., the spontaneous alignment of electron spins below a critical temperature, have been playing key roles in modern science and technologies for both the wide applications of magnetic recording f...Magnetic orderings, i.e., the spontaneous alignment of electron spins below a critical temperature, have been playing key roles in modern science and technologies for both the wide applications of magnetic recording for information storage and the vibrant potential of solid state electronic spin devices (also known as spintronics) for logic operations. In the past decades, thanks to the development of thin film technologies, magnetic thin films via sputtering or epitaxial growth have made the spintronic devices possible at the industrial scale. Yet thinner materials at lower costs with more versatile functionalities are highly desirable for advancing future spintronics. Recently, van der Waals magnetic materials, a family of magnets that can in principle be exfoliated down to the monolayer limit, seem to have brought tremendous opportunities: new generation van der Waals spintronic devices can be seamlessly assembled with possible applications such as optoelectronics, flexible electronics, and etc. Moreover, those exfoliated spintronic devices can potentially be compatible with the famed metal-oxide field effect transistor architectures, allowing the harness of spin performances through the knob of an electrostatic field.展开更多
Two-dimensional(2 D) materials have attracted increasing attentions recently due to their unique physical and chemical properties. We herein report the synthesis of four chemically stable 2 D covalent organic nanosh...Two-dimensional(2 D) materials have attracted increasing attentions recently due to their unique physical and chemical properties. We herein report the synthesis of four chemically stable 2 D covalent organic nanosheets(CONs) with large lateral sizes(up to 200 mm) and high aspect ratios(〉20 000) at the air-water interface through the Langmuir-Blodgett method. These CONs exhibit good crystallinity proved by high resolution transmission electron microscopy(HRTEM) and selected area electron diffraction(SAED). In addition, the hydrophobicity of these CONs can be systematically adjusted by the introduction of various functional groups, making them suitable as functional coating and membrane materials.展开更多
基金supported by MOE under AcRF Tier 2(ARC 26/13,No.MOE2013-T2-1-034ARC 19/15,No.MOE2014-T2-2-093)+8 种基金AcRF Tier 1(RGT18/13,RG5/13)NTU under Start-Up Grant(M4081296.070.500000)iFood Research Grant(M4081458.070.500000)Singapore Millennium Foundation in Singaporethe National Natural Science Foundation of China(GZ213054,51322202)in Chinathe Natural Science Foundation of Jiangsu Province(BK20130927)supported by the Singapore National Research Foundation under its Environmental&Water Technologies Strategic Research Programme and administered by the Environment&Water Industry Programme Office(EWI)of the PUBconducted by NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise(CREATE)supported by the National Research Foundation,Prime Minister’s Office,Singapore~~
基金supported by the National Key R&D Program of China (No. 2017YFA0206302)supported by the National Natural Science Foundation of China (Grants No. 51627801)+1 种基金the finical supports from the National Natural Science Foundation of China (Grants No. 11874409)supports from the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC,China (No. U1537204)
文摘Magnetic orderings, i.e., the spontaneous alignment of electron spins below a critical temperature, have been playing key roles in modern science and technologies for both the wide applications of magnetic recording for information storage and the vibrant potential of solid state electronic spin devices (also known as spintronics) for logic operations. In the past decades, thanks to the development of thin film technologies, magnetic thin films via sputtering or epitaxial growth have made the spintronic devices possible at the industrial scale. Yet thinner materials at lower costs with more versatile functionalities are highly desirable for advancing future spintronics. Recently, van der Waals magnetic materials, a family of magnets that can in principle be exfoliated down to the monolayer limit, seem to have brought tremendous opportunities: new generation van der Waals spintronic devices can be seamlessly assembled with possible applications such as optoelectronics, flexible electronics, and etc. Moreover, those exfoliated spintronic devices can potentially be compatible with the famed metal-oxide field effect transistor architectures, allowing the harness of spin performances through the knob of an electrostatic field.
基金supported by National University of Singapore No. CENGas R-261-508-001-646)Ministry of Education – Singapore ( 13No. MOE Ac RF Tier 1 R-279-000-472-112)
文摘Two-dimensional(2 D) materials have attracted increasing attentions recently due to their unique physical and chemical properties. We herein report the synthesis of four chemically stable 2 D covalent organic nanosheets(CONs) with large lateral sizes(up to 200 mm) and high aspect ratios(〉20 000) at the air-water interface through the Langmuir-Blodgett method. These CONs exhibit good crystallinity proved by high resolution transmission electron microscopy(HRTEM) and selected area electron diffraction(SAED). In addition, the hydrophobicity of these CONs can be systematically adjusted by the introduction of various functional groups, making them suitable as functional coating and membrane materials.