期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
采用新型纹理特征的2DLDA人脸识别算法 被引量:4
1
作者 朱建清 葛主贝 +2 位作者 曾焕强 陈婧 蔡灿辉 《信号处理》 CSCD 北大核心 2017年第6期811-818,共8页
针对现有基于纹理特征的人脸识别算法中纹理特征维数偏大且对噪声较敏感等不足,提出了用于描述人脸图像大尺度局部特征的中心四点二元模式(Center Quad Binary Pattern,C-QBP)和用于描述图像小尺度局部特征的简化四点二元模式(Simplifie... 针对现有基于纹理特征的人脸识别算法中纹理特征维数偏大且对噪声较敏感等不足,提出了用于描述人脸图像大尺度局部特征的中心四点二元模式(Center Quad Binary Pattern,C-QBP)和用于描述图像小尺度局部特征的简化四点二元模式(Simplified Quad Binary Pattern,S-QBP)两种互补的新型纹理特征。在此基础上,实现基于新型纹理特征的2DLDA人脸识别算法。首先对人脸图像进行多级分割,再对所产生的图像块提取C-QBP和S-QBP纹理特征,构建纹理特征矩阵。最后,采用2DLDA子空间学习算法实现基于新型纹理特征的人脸识别。实验结果表明,本文所提出的人脸识别算法的识别率明显高于其他基于纹理特征和子空间学习的人脸识别算法。当每一类训练样本数统一设置为5,特征维数为48×4时,在ORL人脸库上,本文所提出的人脸识别算法的识别率达98.68%;在YALE人脸库上,特征维数为48×36时,识别率达99.42%;在FERET人脸库上,特征维数为48×26时,识别率为91.73%。 展开更多
关键词 人脸识别 新型纹理特征 二维线性鉴别分析(2dlda)
下载PDF
核方法的对比研究及在步态识别中的应用 被引量:3
2
作者 贲晛烨 王科俊 刘海洋 《智能系统学报》 2011年第1期63-67,共5页
为了提高步态识别问题的识别性能,将"核技巧"应用到步态识别上,对核二维线性判别分析提出新的解决方案,在自建的HEU(B)步态数据库上,应用核主成分分析、核线性判别分析、核二维主成分分析与核二维线性判别分析进行特征提取作... 为了提高步态识别问题的识别性能,将"核技巧"应用到步态识别上,对核二维线性判别分析提出新的解决方案,在自建的HEU(B)步态数据库上,应用核主成分分析、核线性判别分析、核二维主成分分析与核二维线性判别分析进行特征提取作对比实验研究.实验结果显示:"核技巧"用于矩阵特征比向量更有效;核二维主成分分析对于单训练样本较核主成分分析更为有效;核二维线性判别分析在测试识别时间上有优势. 展开更多
关键词 步态识别 核主成分分析 核线性判别分析 核二维主成分分析 核二维线性判别分析
下载PDF
融合2DPCA和模糊2DLDA的人脸识别 被引量:8
3
作者 赵冬娟 梁久祯 《计算机应用》 CSCD 北大核心 2011年第2期420-422,449,共4页
结合模糊集理论、双向二维主成分-线性鉴别分析((2D)2PCALDA)的特点,提出一种新的人脸图像特征提取方法。算法首先对人脸图像进行二维主成分分析(2DPCA)处理,再用模糊K近邻算法计算图像的隶属度矩阵,并将其融入到2DLDA过程中,从而得到... 结合模糊集理论、双向二维主成分-线性鉴别分析((2D)2PCALDA)的特点,提出一种新的人脸图像特征提取方法。算法首先对人脸图像进行二维主成分分析(2DPCA)处理,再用模糊K近邻算法计算图像的隶属度矩阵,并将其融入到2DLDA过程中,从而得到模糊类间散射矩阵和模糊类内散射矩阵。与(2D)2PCALDA相比,该算法充分利用了(2D)2PCALDA的优点,有效地提取了行和列的识别信息,并充分考虑了样本的分布信息。在Yale和FERET人脸数据库上的实验结果表明,该方法识别效果优于(2D)2PCALDA、双向二维主成分分析((2D)2PCA)等方法。 展开更多
关键词 人脸识别 二维主成分分析 二维线性鉴别分析 模糊Fisherface 特征提取
下载PDF
基于ULBP特征子空间的2DLDA人脸识别方法 被引量:6
4
作者 吴煌鹏 戴声奎 《模式识别与人工智能》 EI CSCD 北大核心 2014年第10期894-899,共6页
将图像层次化分割并提取各个图像子块的均匀模式的局部二值模式(ULBP)直方图特征,在考虑到全局及局部特征的同时,将处理空间从灰度空间投影到ULBP特征子空间,有效消除行向量之间的相关性,从而使应用行二维线性鉴别分析处理得到的鉴别投... 将图像层次化分割并提取各个图像子块的均匀模式的局部二值模式(ULBP)直方图特征,在考虑到全局及局部特征的同时,将处理空间从灰度空间投影到ULBP特征子空间,有效消除行向量之间的相关性,从而使应用行二维线性鉴别分析处理得到的鉴别投影矩阵性能更优.在ORL、YALE及FERET人脸库上与基于二维线性鉴别分析的方法及基于多级局部二值模式的方法对比,结果显示文中方法维数更低,识别率更高,从而验证文中方法的有效性. 展开更多
关键词 人脸识别 特征子空间 二维线性鉴别分析(2dlda) 均匀模式的局部二值模式(ULBP)
下载PDF
基于L1-范数的二维线性判别分析 被引量:4
5
作者 陈思宝 陈道然 罗斌 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1372-1377,共6页
为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对... 为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。 展开更多
关键词 图像处理 L1-范数 2维线性判别分析 线性投影 降维
下载PDF
基于2DLDA与SVM的人脸识别算法 被引量:3
6
作者 甘俊英 何思斌 《计算机应用》 CSCD 北大核心 2009年第7期1927-1929,共3页
二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的"小样本"效应,支持向量机(SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽略高频分量;然后,用2DLDA... 二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的"小样本"效应,支持向量机(SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽略高频分量;然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用"一对多"的SVM多类分类算法完成人脸识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。 展开更多
关键词 小波变换 二维线性鉴别分析 支持向量机 人脸识别
下载PDF
基于图像分块的改进Fisher人脸识别算法 被引量:3
7
作者 梁淑芬 甘俊英 《计算机工程与应用》 CSCD 北大核心 2009年第19期165-167,共3页
二维方法用于图像矩阵特征提取,虽然速度快,但影响了分类速度。针对二维线性鉴别分析(Two-Dimensional Linear Discriminant Analysis,2DLDA)的特点,研究了一种基于图像分块的改进Fisher人脸识别算法,该算法首先对人脸图像进行压缩降维... 二维方法用于图像矩阵特征提取,虽然速度快,但影响了分类速度。针对二维线性鉴别分析(Two-Dimensional Linear Discriminant Analysis,2DLDA)的特点,研究了一种基于图像分块的改进Fisher人脸识别算法,该算法首先对人脸图像进行压缩降维处理,得到相应的特征矩阵,然后利用改进Fisher算法对特征矩阵进行类间离散度矩阵和类内离散度矩阵的计算,该算法充分考虑了类别信息,避免了传统Fisher算法造成的小样本问题,有效提高了分类速度。基于ORL(Olivetti Research Laboratory)与Yale人脸数据库的实验结果证明了该算法的有效性。 展开更多
关键词 人脸识别 二维线性鉴别分析 改进Fisher算法
下载PDF
一种基于重采样双向2DLDA融合的人脸识别算法 被引量:2
8
作者 李文辉 姜园媛 +1 位作者 王莹 傅博 《电子学报》 EI CAS CSCD 北大核心 2011年第11期2526-2533,共8页
针对人脸识别中普遍存在的光照、表情等变化带来的识别问题和小样本问题,本文提出了一种利用重采样技术融合双向2DLDA特征的人脸识别算法Resampling Bidirection 2DLDA(RB2DLDA).二维线性判别分析中,2DLDA利用垂直方向上的类内和类间协... 针对人脸识别中普遍存在的光照、表情等变化带来的识别问题和小样本问题,本文提出了一种利用重采样技术融合双向2DLDA特征的人脸识别算法Resampling Bidirection 2DLDA(RB2DLDA).二维线性判别分析中,2DLDA利用垂直方向上的类内和类间协方差信息进行识别,E2DLDA利用水平方向上的类内和类间协方差信息进行识别,本文中从理论上证明了这两个方向上的判别信息具有一定的互补性,为融合两个方向的判别信息进行分类器的设计,改善分类器的识别性能提供了理论基础.同时为RB2DLDA算法提出一种自适应的降维参数设定方法,经过在AR和CAS-PEAL-R1人脸库上的实验表明,RB2DLDA算法具有较高的识别率和鲁棒性. 展开更多
关键词 人脸识别 重采样 双向二维线性判别分析
下载PDF
基于二维复判别分析的人脸识别研究 被引量:2
9
作者 胡晓 俞王新 余群 《计算机工程与设计》 CSCD 北大核心 2010年第11期2514-2518,共5页
为了提高人脸正确识别率和效率,在行列方向的二维线性判别分析((2D)2LDA)基础之上,提出了一种二维复判别分析(2DCCDA)的人脸识别方法。该方法通过(2D)2LDA并行提取到的行和列特征矩阵,利用复二维鉴别式分析(C2DLDA)将行和列特征融合成... 为了提高人脸正确识别率和效率,在行列方向的二维线性判别分析((2D)2LDA)基础之上,提出了一种二维复判别分析(2DCCDA)的人脸识别方法。该方法通过(2D)2LDA并行提取到的行和列特征矩阵,利用复二维鉴别式分析(C2DLDA)将行和列特征融合成复数特征矩阵,从复数特征矩阵中提取出最具分类能力的系数组成特征向量。相比较二维线性判别分析(2DLDA)和(2D)2LDA方法,2DCCDA需要更少的特征系数来表征一幅图像,并且正确识别率也相应提高。 展开更多
关键词 人脸识别 主成份分析 线性判别分析 复二维鉴别式分析 二维复判别分析
下载PDF
融合双向2DLDA和局部SVD的人脸识别 被引量:3
10
作者 刘霄 张建明 《计算机工程》 CAS CSCD 北大核心 2009年第17期181-183,186,共4页
针对人脸识别中光照、表情、姿态的影响,提出一种融合双向二维线性鉴别分析和局部对称平均的人脸识别新方法。通过双向二维线性鉴别分析对整幅图像进行特征提取,利用局部奇异值分解对称平均提取图像的局部特征。对2种方法提取到的特征... 针对人脸识别中光照、表情、姿态的影响,提出一种融合双向二维线性鉴别分析和局部对称平均的人脸识别新方法。通过双向二维线性鉴别分析对整幅图像进行特征提取,利用局部奇异值分解对称平均提取图像的局部特征。对2种方法提取到的特征利用基于加权欧式距离的最近邻分类器进行融合识别,在ORL人脸库上的实验结果证明了该方法的有效性。 展开更多
关键词 双向二维线性鉴别分析 局部奇异值分解 特征融合 加权欧氏距离 人脸识别
下载PDF
基于小波分解和K2DPCA-2DLDA的手背静脉识别 被引量:2
11
作者 吕岑 程诚 赵东霞 《计算机应用》 CSCD 北大核心 2011年第2期423-425,共3页
提出了一种基于小波分解和二维主成分分析-二维线性判别式分析(K2DPCA-2DLDA)的手背静脉识别方法,选用db4小波基对原图进行小波分解。对其低频子图进行K2DPCA映射获得低维空间特征,通过对此低维空间特征进行2DLDA变换得到最终特征表达,... 提出了一种基于小波分解和二维主成分分析-二维线性判别式分析(K2DPCA-2DLDA)的手背静脉识别方法,选用db4小波基对原图进行小波分解。对其低频子图进行K2DPCA映射获得低维空间特征,通过对此低维空间特征进行2DLDA变换得到最终特征表达,利用最近邻法则进行了分类。实验结果表明,该方法能提高手背静脉识别率,有效减少识别时间。 展开更多
关键词 生物识别技术 手背静脉 小波分解 核二维主成分分析 二维线性判别式分析
下载PDF
基于模糊集理论的二维线性鉴别分析新方法 被引量:1
12
作者 郑宇杰 杨静宇 +1 位作者 吴小俊 李勇智 《中国工程科学》 2007年第2期49-53,共5页
二维线性鉴别分析(2DLDA)是一种直接基于矩阵的特征提取方法,跳过传统的基于Fisher鉴别准则的线性鉴别分析方法中必须先将二维矩阵转化成一维矢量的过程,有效地提高了特征提取速度且避免了小样本问题,其识别率优于传统的Fisherface方法... 二维线性鉴别分析(2DLDA)是一种直接基于矩阵的特征提取方法,跳过传统的基于Fisher鉴别准则的线性鉴别分析方法中必须先将二维矩阵转化成一维矢量的过程,有效地提高了特征提取速度且避免了小样本问题,其识别率优于传统的Fisherface方法。结合模糊集理论,提出了一种新的2DLDA算法———模糊2DLDA(F1DLDA)算法。首先采用FKNN算法得到相应的样本分布信息,并按其对最后得到的特征向量所作的贡献融入到特征抽取过程中,得到有效的样本特征向量集。实验表明,F2DLDA算法的性能优于传统的2DLDA算法和Fisherface方法。 展开更多
关键词 二维线性鉴别分析 模糊二维线性鉴别分析 模糊集理论 特征提取 模糊k近邻
下载PDF
基于改进的双向二维线性判别分析的人脸识别
13
作者 叶延亮 徐正光 《计算机工程与应用》 CSCD 北大核心 2008年第31期188-190,共3页
针对传统的二维线性判别方法提取出的人脸特征系数维数大的问题,提出一个改进的双向二维线性判别分析方法GB2DLDA。双向压缩类内和类间散布矩阵,用压缩后的散布矩阵构成两个Fisher鉴别准则函数,求出两个投影矩阵,然后人脸图像矩阵向投... 针对传统的二维线性判别方法提取出的人脸特征系数维数大的问题,提出一个改进的双向二维线性判别分析方法GB2DLDA。双向压缩类内和类间散布矩阵,用压缩后的散布矩阵构成两个Fisher鉴别准则函数,求出两个投影矩阵,然后人脸图像矩阵向投影矩阵投影,提取出特征系数。实验证明在相同识别率下,用此方法提取的特征系数维数明显少于其它二维线性判别分析方法。在选择合适的特征向量的情况下,此方法的识别率要好于其它二维线性判别分析方法。 展开更多
关键词 二维主元分析法 双向二维线性鉴别分析方法 改进的双向二维线性判别分析方法 压缩 投影矩阵
下载PDF
基于子模式行列方向二维线性判别分析特征融合的特征提取 被引量:1
14
作者 董晓庆 陈洪财 《计算机应用》 CSCD 北大核心 2014年第12期3593-3598,共6页
针对人脸识别中表情和光照变化引起的面部变化、灰度不均匀等识别问题,提出一种基于子模式行列方向二维线性判别分析(Sp-RC2DLDA)的特征提取方法。该方法通过对原图像进行子模式分块处理,能有效提取图像的局部特征,减少表情、光照变化... 针对人脸识别中表情和光照变化引起的面部变化、灰度不均匀等识别问题,提出一种基于子模式行列方向二维线性判别分析(Sp-RC2DLDA)的特征提取方法。该方法通过对原图像进行子模式分块处理,能有效提取图像的局部特征,减少表情、光照变化的影响,通过把相同位置的子图像组成子样本集,合理利用了子块间的空间关系,进一步提高了识别率;同时,对各个子样本集分别利用行方向二维线性判别分析(2DLDA)和列方向扩展2DLDA(E2DLDA)进行特征抽取,得到互补的行、列方向子图像特征,并分别把子图像特征组合成原图像的特征矩阵,然后利用一种特征融合方法对行、列方向特征矩阵进行有效融合,对互补的特征空间进行融合有效地改善了识别性能;最后采用最近邻分类器进行人脸识别实验。在Yale及ORL人脸库上的实验结果表明,Sp-RC2DLDA有效地减少了表情和光照变化的影响,具有较好的鲁棒性。 展开更多
关键词 人脸识别 特征抽取 扩展二维线性判别分析 子模式 特征融合
下载PDF
基于全局与局部特征融合的人脸识别
15
作者 王斌斌 陈立生 《现代计算机》 2013年第7期30-33,共4页
由于全局特征与局部特征在人脸识别中的不同作用及结合的必要性,提出基于2DLDA全局特征与LBP局部特征加权融合算法,并在ORL库及光照子集、表情子集、姿态子集四个实验库上讨论融合算法对复杂光照、表情、姿态的鲁棒性。实验结果验证两... 由于全局特征与局部特征在人脸识别中的不同作用及结合的必要性,提出基于2DLDA全局特征与LBP局部特征加权融合算法,并在ORL库及光照子集、表情子集、姿态子集四个实验库上讨论融合算法对复杂光照、表情、姿态的鲁棒性。实验结果验证两种特征的互补性和融合算法的有效性。 展开更多
关键词 人脸识别 全局特征 局部特征 二维线性判别(2dlda) 局部二值模式(LBP) 特征融合
下载PDF
改进双向二维局部保持投影的人脸识别算法 被引量:2
16
作者 吴斌 王利龙 邵延华 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第6期904-909,924,共7页
为更好地处理图像小样本问题,且克服二维局部保持投影(2DLPP)算法只能保持数据局部性质的缺陷,通过结合二维主成分分析(2DPCA)和二维线性鉴别分析(2DLDA)的算法特性,提出了一种改进的双向二维局部保持投影的人脸识别算法.首先,引入样本... 为更好地处理图像小样本问题,且克服二维局部保持投影(2DLPP)算法只能保持数据局部性质的缺陷,通过结合二维主成分分析(2DPCA)和二维线性鉴别分析(2DLDA)的算法特性,提出了一种改进的双向二维局部保持投影的人脸识别算法.首先,引入样本类别信息改进权重矩阵,增强2DLPP算法对样本变化的鲁棒性;其次,提出改进2DLPP+2DPCA、2DLPP+2DLDA两种融合算法并分别用于输入样本图像数据的行、列方向特征提取.在特征选择后得到行、列方向上的最优投影;最后,通过对样本数据进行行、列方向投影,利用最近邻分类器对样本数据进行分类并获得在给定数据集上的识别结果.在人脸数据集ORL、YALE和AR上的实验结果表明,该算法在人脸识别性能上总体优于2DPCA、2DLDA、2DLPP、(2D)2PCA、(2D)2LDA、(2D)2PCALDA和(2D)2LPP-PCA等算法. 展开更多
关键词 人脸识别 特征提取 二维线性鉴别分析 二维局部保持投影 二维主成分分析
下载PDF
图像多模态扰动的人脸识别方法
17
作者 张国庆 王正群 +1 位作者 王颖静 徐伟 《计算机工程与应用》 CSCD 2013年第7期204-207,247,共5页
为了克服因人脸图像检测引起的配准不稳定性和小样本引起的维数灾难,由一副二维人脸图像通过上下左右平移生成4个图像,把生成的图像与原来的图像一起加入训练样本集,构成新的训练图像集。基于二维图像,结合图像局部结构信息,设计了准则... 为了克服因人脸图像检测引起的配准不稳定性和小样本引起的维数灾难,由一副二维人脸图像通过上下左右平移生成4个图像,把生成的图像与原来的图像一起加入训练样本集,构成新的训练图像集。基于二维图像,结合图像局部结构信息,设计了准则函数,获得双投影矩阵,抽取人脸特征。对待识别人脸图像,由它的扰动图像设计识别方法。与传统的人脸识别方法相比,该方法的识别效果更好;Yale和ORL人脸数据库上的实验结果验证了该方法的有效性。 展开更多
关键词 二维线性判别分析(2dlda) 小样本问题 图像扰动 特征抽取
下载PDF
基于2DLDA与SVM的人耳识别算法
18
作者 吕秀丽 崔红飞 +2 位作者 赵丽华 全星慧 曹志民 《电子设计工程》 2016年第3期163-165,共3页
文中提出将二维线性鉴别分析(2DLDA)和支持向量机(SVM)相结合的人耳识别算法。先利用二维线性鉴别分析提取人耳图像的特征,再采用一对一的方法用支持向量机分类器实现人耳特征的分类识别。与传统的2DLDA对比实验结果表明,该方法具有更... 文中提出将二维线性鉴别分析(2DLDA)和支持向量机(SVM)相结合的人耳识别算法。先利用二维线性鉴别分析提取人耳图像的特征,再采用一对一的方法用支持向量机分类器实现人耳特征的分类识别。与传统的2DLDA对比实验结果表明,该方法具有更高的识别率,是一种非常有效的识别方法。 展开更多
关键词 人耳识别 二维线性鉴别分析 提取特征 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部