In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four s...In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.展开更多
The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respec...The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads.展开更多
This paper studies the two-dimensional layout optimization problem. An optimization model with performance constraints is presented. The layout problem is partitioned into finite subproblems in terms of graph theory, ...This paper studies the two-dimensional layout optimization problem. An optimization model with performance constraints is presented. The layout problem is partitioned into finite subproblems in terms of graph theory, in such a way of that each subproblem overcomes its on-off nature optimal variable. A minimax problem is constructed that is locally equivalent to each subproblem. By using this minimax problem, we present the optimality function for every subproblem and prove that the first order necessary optimality condition is satisfied at a point if and only if this point is a zero of optimality function.展开更多
基金supported by 973 Key program and the Key Program from Beijing Educational Commission with No. KZ200910028002Program for New Century Excellent Talents in University (NCET)+4 种基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR-IHLB)The research of Sheng partially supported by NSFC (10671120)Shanghai Leading Academic Discipline Project: J50101The research of Zhang partially supported by NSFC (10671120)The research of Zheng partially supported by NSF-DMS-0603859
文摘In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.
基金The project supported by the National Natural Science Foundation of China(19772004)
文摘The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads.
文摘This paper studies the two-dimensional layout optimization problem. An optimization model with performance constraints is presented. The layout problem is partitioned into finite subproblems in terms of graph theory, in such a way of that each subproblem overcomes its on-off nature optimal variable. A minimax problem is constructed that is locally equivalent to each subproblem. By using this minimax problem, we present the optimality function for every subproblem and prove that the first order necessary optimality condition is satisfied at a point if and only if this point is a zero of optimality function.