针对双绞线耦合雷电电磁脉冲的问题,利用试验和理论相结合的方法,建立了双绞线接收雷电电磁脉冲的试验模型,得到了双绞线耦合雷电电磁脉冲电压及频谱特征,试验结果得出:1)双绞线间接入100Ω匹配电阻的情况:双绞线的耦合电压随着冲击电...针对双绞线耦合雷电电磁脉冲的问题,利用试验和理论相结合的方法,建立了双绞线接收雷电电磁脉冲的试验模型,得到了双绞线耦合雷电电磁脉冲电压及频谱特征,试验结果得出:1)双绞线间接入100Ω匹配电阻的情况:双绞线的耦合电压随着冲击电流的增大而增大,可是增加线缆高度对双绞线的耦合电压并没有太大影响。2)双绞线对地接入负载电阻的情况:在相同高度下,双绞线的耦合电压与负载电阻值呈正相关关系;在电阻不变的情况下,高度越高,耦合电压值越大。3)耦合电压的频谱特性:频率主要集中在8 k Hz和2.3 MHz这两个频点周围且耦合电压的幅值与负载电阻和冲击电流皆成正比例关系。试验结果与理论分析基本吻合。研究结果对双绞线耦合雷电电磁脉冲的抑制有一定的指导意义。展开更多
Protobialgebroids include several kinds of algebroid structures such as Lie algebroid,Lie bialgebroid, Lie quasi-bialgebroid, etc. In this paper, the Dirac theories are generalized from Lie bialgebroid to protobialgeb...Protobialgebroids include several kinds of algebroid structures such as Lie algebroid,Lie bialgebroid, Lie quasi-bialgebroid, etc. In this paper, the Dirac theories are generalized from Lie bialgebroid to protobialgebroid. We give the integrable conditions for a maximally isotropic subbundle being a Dirac structure for a protobialgebroid by the notion of a characteristic pair. From the integrable conditions, we found out that the Dirac structure has closed relations with the twisting of a protobialgebroid. At last, some special cases of the Dirac structures for protobialgebroids are discussed.展开更多
文摘针对双绞线耦合雷电电磁脉冲的问题,利用试验和理论相结合的方法,建立了双绞线接收雷电电磁脉冲的试验模型,得到了双绞线耦合雷电电磁脉冲电压及频谱特征,试验结果得出:1)双绞线间接入100Ω匹配电阻的情况:双绞线的耦合电压随着冲击电流的增大而增大,可是增加线缆高度对双绞线的耦合电压并没有太大影响。2)双绞线对地接入负载电阻的情况:在相同高度下,双绞线的耦合电压与负载电阻值呈正相关关系;在电阻不变的情况下,高度越高,耦合电压值越大。3)耦合电压的频谱特性:频率主要集中在8 k Hz和2.3 MHz这两个频点周围且耦合电压的幅值与负载电阻和冲击电流皆成正比例关系。试验结果与理论分析基本吻合。研究结果对双绞线耦合雷电电磁脉冲的抑制有一定的指导意义。
文摘Protobialgebroids include several kinds of algebroid structures such as Lie algebroid,Lie bialgebroid, Lie quasi-bialgebroid, etc. In this paper, the Dirac theories are generalized from Lie bialgebroid to protobialgebroid. We give the integrable conditions for a maximally isotropic subbundle being a Dirac structure for a protobialgebroid by the notion of a characteristic pair. From the integrable conditions, we found out that the Dirac structure has closed relations with the twisting of a protobialgebroid. At last, some special cases of the Dirac structures for protobialgebroids are discussed.