The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorith...The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorithm. CAD software was used to construct the complicated nozzle in the calculational region. The simulation accuracy was validated by comparison with the classic driven cavity flow problem. The simulation results agree well with water modeling experiments. The simulations show that the velocity distribution at the nozzle port is uneven and the jet faces downward more than the nozzle outlet. Simulations with a configured nozzle and the inlet velocity at the nozzle entrance give precise results and overcome the traditional difficulty in determining the nozzle outlet velocity.展开更多
The transient turbulent flow in continuous casting steel plays a key role in minimizing defects. Compared with the k-ε model, the large eddy simulation (LES) of turbulence provides much more accurate representation...The transient turbulent flow in continuous casting steel plays a key role in minimizing defects. Compared with the k-ε model, the large eddy simulation (LES) of turbulence provides much more accurate representation of turbulent flow by resolving large-scale dynamics. The turbulent flow in a liquid metal model of continuous casting has been simulated by LES and measured using ultrasonic Doppler velocimetry (UDV). The result of measurement and LES has been compared to validate the LES model and furthermore enhance the understanding of the transient turbulent feature in the flow field. The results show that the jet exiting from the nozzle port swings, which is not steady, and turbulent velocity variation frequencies decreased with distance from the nozzle port region and also the LES mode can capture the high frequency fluctuation, which the measurement cannot detect.展开更多
文摘The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorithm. CAD software was used to construct the complicated nozzle in the calculational region. The simulation accuracy was validated by comparison with the classic driven cavity flow problem. The simulation results agree well with water modeling experiments. The simulations show that the velocity distribution at the nozzle port is uneven and the jet faces downward more than the nozzle outlet. Simulations with a configured nozzle and the inlet velocity at the nozzle entrance give precise results and overcome the traditional difficulty in determining the nozzle outlet velocity.
基金Item Sponsored by National Natural Science Foundation of China(51074021)
文摘The transient turbulent flow in continuous casting steel plays a key role in minimizing defects. Compared with the k-ε model, the large eddy simulation (LES) of turbulence provides much more accurate representation of turbulent flow by resolving large-scale dynamics. The turbulent flow in a liquid metal model of continuous casting has been simulated by LES and measured using ultrasonic Doppler velocimetry (UDV). The result of measurement and LES has been compared to validate the LES model and furthermore enhance the understanding of the transient turbulent feature in the flow field. The results show that the jet exiting from the nozzle port swings, which is not steady, and turbulent velocity variation frequencies decreased with distance from the nozzle port region and also the LES mode can capture the high frequency fluctuation, which the measurement cannot detect.